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fundamental properties. In particular, it is proved that these 
rings are clean. We also consider the questions of when the 
Nagata ring as well as the group ring is weakly nil clean.
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1. Introduction and background

Throughout the present paper all rings considered, unless otherwise noted, shall be 
assumed to be commutative and possess an identity. Our notation and terminology shall 
follow [10] and [15]. For instance, for such a ring R, U(R) denotes the group of all units 
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of R, N(R) is the nil-radical of R, J(R) is the Jacobson radical of R, and Id(R) is the set 
of all idempotents of R. It is a known fact that U(R) +N(R) = U(R). If 1 − x ∈ U(R), 
then x is called quasi-regular. We denote the set of quasi-regular elements of R by �(R). 
We denote the set of all maximal ideals of R by Max(R).

W.K. Nicholson [23] introduced the notion of a clean ring. Over the last ten to fifteen 
years there has been an explosion of interest in this class of rings as well as the many 
generalizations and variations (see [14] too). For a comprehensive history of clean rings 
up until its publication the reader is urged to read [19].

Definition 1.1. A ring R is called clean if for every r ∈ R there exist u ∈ U(R) and 
e ∈ Id(R) such that r = u + e.

Recently, A. Diesl [11] modified the definition of a clean ring and obtained an interest-
ing new concept he called nil clean. In his article he proved many fundamental properties 
as well as developed a general theory of nil clean rings; his interest, as was Nicholson’s, 
was in the context of non-commutative rings. For other recent articles related to nil clean 
rings see [5,7,8].

Definition 1.2. A ring R is said to be nil clean if for each r ∈ R there are n ∈ N(R) and 
e ∈ Id(R) such that r = n + e.

By rephrasing Corollary 3.20 of [11], we can give a nice characterization of nil clean 
rings.

Proposition 1.3. The ring R is nil clean if and only if R/N(R) is a boolean ring.

The notion of uniquely clean rings was firstly defined in [4] in the commutative case 
as those rings in which every element is uniquely the sum of a unit and an idempotent. 
Later on, in [24] the authors study such arbitrary rings, again calling them uniquely 
clean; notice that this uniqueness is tantamount to the existence of a unique idempotent 
with the given sum property (see [6]). In a subsequent paper, [25], the same authors 
coined the term semi-boolean ring as a (general) ring I satisfying the condition that for 
all r ∈ I there is an e ∈ Id(R) and j ∈ J(R) such that r = j + e; this was done in the 
context of rings not necessarily commutative nor possessing an identity. In Example 25 
of the article they show that a uniquely clean ring is semi-boolean. Then Proposition 26 
clarifies the situation for commutative rings with identity. Specifically, such a ring is 
uniquely clean if and only it is semi-boolean. Thus, we arrive at our first result whose 
proof follows from the definition of semi-boolean and the equivalence of semi-boolean to 
uniquely clean in our contexts.

Proposition 1.4. Let R be a ring. If R is nil clean, then it is uniquely clean and therefore 
clean. The converse is not true as witnessed by the ring R = Z(2), the localization of the 
integers at the prime 2.
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Remark 1.5. At this point we could consider the appropriate definition of a uniquely nil 
clean ring. However, we would like to demonstrate that every nil clean ring is actually 
uniquely nil clean (see also Corollary 3.8 from [11] and the surrounding discussion there).

Proposition 1.6. Let R be a ring. If R is nil clean, then for every r ∈ R there exists a 
unique nilpotent, say n ∈ N(R), such that r−n ∈ Id(R). In addition, each element in R

has a unique nil clean expression.

Proof. Suppose R is nil clean. We begin by showing that every idempotent has a unique 
nil clean expression. To that end, let e ∈ Id(R) and let n ∈ N(R) and f ∈ Id(R) be such 
that e = n + f . We claim that n = 0 and f = e. Since n ∈ N(R) there is a j ∈ N such 
that nj = 0. By the Binomial Theorem together with the fact that e is an idempotent 
we have

e = ej = (n + f)j = nj +
(
j

1

)
nj−1f +

(
j

2

)
nj−2f2 + · · · +

(
j

j − 1

)
nf j−1 + f j .

Set n′ =
(
j
1
)
nj−1 +

(
j
2
)
nj−2 + · · · +

(
j

j−1
)
n ∈ N(R) and observe that, since f is 

idempotent and nj = 0, it follows that

e =
(
n′ + 1

)
f.

Since n′ ∈ N(R), we know that u = n′ + 1 ∈ U(R). From here one can deduce 
that e = f because idempotents that are associate are equal. We include a proof for 
completeness-sake. On the one hand, ef = uf2 = uf = e. On the other hand f = u−1e

so that ef = u−1e2 = u−1e = f . It follows that e = f and hence n = 0.
Next, suppose r ∈ R has two nil clean expressions, say r = n1 + e1 = n2 + e2 for 

n1, n2 ∈ N(R) and e1, e2 ∈ Id(R). Then e1 = (n2 − n1) + e2. Furthermore, from what 
we have already proved above, we deduce that e1 = e2 and n2 − n1 = 0, as wanted. �

Ahn and Anderson [1] generalized the notion of clean ring in the following manner.

Definition 1.7. The ring R is called weakly clean if every r ∈ R can be written as r = u +e

or r = u − e for some u ∈ U(R) and e ∈ Id(R).

A new interesting criterion for a ring to be weakly clean is the following one (cf. [9]). 
The ring R is weakly clean if and only if for any x ∈ R there exists e ∈ Id(R) such that 
e ∈ xR and either 1 − e ∈ (1 − x)R or 1 − e ∈ (1 + x)R.

The main instrument in our exploration is the following generalization of Definition 1.2
which uses Ahn and Anderson’s idea.

Definition 1.8. The ring R is said to be weakly nil clean if each r ∈ R can be written as 
r = n + e or r = n − e, where n ∈ N(R) and e ∈ Id(R).
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Recall that an element in a ring, say r ∈ R, is called unipotent if it can be written as 
1 +b for some nilpotent b ∈ R. It is patent to check that any ring is weakly nil clean if and 
only if every element can be written as either the sum of a nilpotent and an idempotent, 
or of a unipotent and an idempotent.

In [1], an example is given of a weakly clean ring that is not clean. With regards to 
weakly nil clean rings, Z3 is an example of a weakly nil clean ring that is not nil clean. 
Since a reduced ring is nil clean if and only if it is boolean, it follows that the only 
domain that is nil clean is R = Z2. We will mention some other properties of the class 
of weakly nil clean rings.

Proposition 1.9. Let R be a ring. Then the following statements are true:

(i) The class of weakly nil clean rings is closed under homomorphic images. In partic-
ular, R is weakly nil clean if and only if R/I is weakly nil clean, provided that I is 
a nil-ideal of R.

(ii) The class of weakly nil clean rings is not closed under finite products; e.g. Z3 × Z3

is not weakly nil clean.
(iii) A reduced indecomposable ring is weakly nil clean if and only if it is isomorphic to 

either Z2 or Z3. In particular, any weakly nil clean domain is isomorphic to either 
Z2 or Z3.

(iv) A weakly nil clean ring is zero-dimensional. Hence a weakly nil clean ring is clean.

Proof. The first part of (i) is clear since the homomorphic image of a nilpotent (resp. an 
idempotent) element is again a nilpotent (resp. an idempotent). As for the second part 
of (i), let r ∈ R. Write r + I = n + I + e + I or r + I = n + I − e + I, where n is a 
nilpotent and e is an idempotent. Therefore, r−n − e =∈ I or r−n + e =∈ I. It follows 
immediately that r− e = n + i or r + e = n + i, where i ∈ I. Either way n + i is again a 
nilpotent. So, R is weakly nil clean, as desired.

We leave the verification of (ii) to the interested reader, which is not too hard.
For (iii) notice that we are saying that 0 is the only nilpotent element and 0 and 1 

are the only idempotents. That a ring is weakly nil clean in this case only leaves us with 
three possibilities for elements in R: 0, 1, −1.

As for (iv) let R be a weakly nil clean ring and P a prime ideal of R. Then by (i) 
and (iii), the quotient R/P is isomorphic to either Z2 or Z3, and so P is a maximal ideal. 
That zero-dimensional rings are clean is well known (cf. [22]). �

Observe that if a ring has characteristic 2 then, trivially, the ring is weakly nil clean 
if and only if it is nil clean. We can generalize this to the following statement.

Proposition 1.10. Let R be a ring with identity. Then R is weakly nil clean and 2 ∈ N(R)
if and only if R is nil clean.
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Proof. The sufficiency is straightforward as it is known from Proposition 3.14 in [11]
that 2 ∈ N(R) in a nil clean ring. Conversely, suppose that R is weakly nil clean and 
2 ∈ N(R). Since Proposition 1.9 (i) allows us to deduce that R is weakly nil clean if and 
only if R/N(R) is weakly nil clean, we may assume that 2 = 0 in the quotient R/N(R), 
i.e., char(R/N(R)) = 2. It is therefore obvious that R/N(R) is boolean. Thus, we cite 
Proposition 1.3 to get that R is nil clean. �
Remark 1.11. Note that 2 being a nilpotent, however, does not imply that weakly nil 
cleanness coincides with weakly cleanness. In fact, there is even a clean ring of charac-
teristic 2 which is not weakly nil clean. For example, in terms of Section 2 below, such a 
ring is the group ring Z2[C3] – it is finite and hence clean. In the next section we prove 
a result (namely Corollary 2.2) from which we can conclude that Z2[C3] is not weakly 
nil clean.

Proposition 3.14 of [11] states that 2 is nilpotent in any nil clean ring. This is not true 
in a weakly nil clean ring, but the following does hold.

Proposition 1.12. If R is a weakly nil clean ring, then 6 ∈ N(R).

Proof. If 6 = 0, we are done, so assume that 6 �= 0. Write either 2 = n + e or 2 = n − e

where n ∈ N(R) and e ∈ Id(R). In the first case, 1 − e = n − 1 is both an idempotent 
and a unit, hence n − 1 = 1 gives that 2 = n is nilpotent, and hence so is 6, as desired.

In the second case, 1 + e = n − 1, whence 1 + 3e = (1 + e)2 = (n − 1)2 = n2 − 2n + 1, 
that is, 3e = n2 − 2n is a nilpotent element. Furthermore, multiplying both sides of 
2 = n − e by 3, we derive that 6 = 3n − 3e = 5n − n2 is again a nilpotent element, as 
asserted. �

Some authors have been interested in when a ring R is a union of subsets consisting 
of clean elements. In this way, Theorem 14 of [4] characterizes rings R for which R =
Id(R) ∪U(R) as either fields or boolean rings. Likewise, Theorem 3.1 of [16] demonstrates 
that R = U(R) ∪�(R) if and only if R is a local ring, and shows that R = Id(R) ∪�(R) if 
and only if R is a division ring. In Theorem 1.12 of [1] the authors looked at the condition 
of a ring for which R = Id(R) ∪ −Id(R). We next recall this last theorem (adding the 
fourth condition). This places the weakly nil clean condition in the appropriate context.

Theorem 1.13. Let R be a reduced ring. The following statements are equivalent.

(i) R = Id(R) ∪ −Id(R).
(ii) R is either boolean, isomorphic to Z3, or isomorphic to B × Z3 for some boolean 

ring B.
(iii) For all x ∈ R, either x2 = x or x2 = −x.
(iv) The ring R is weakly nil clean.
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Proof. For a reduced ring R, being a weakly nil clean is easily seen to be equivalent to 
R = Id(R) ∪ −Id(R). �
Corollary 1.14. Suppose R is a reduced weakly nil clean ring. Any subring of R is also 
reduced weakly nil clean.

Proof. Let S be a subring of R, a reduced weakly nil clean ring. By Theorem 1.13 for 
any s ∈ S, and hence s ∈ R, we know that either s ∈ Id(R) or −s ∈ Id(R). But then 
either s ∈ Id(S) or −s ∈ Id(S). Consequently, S = Id(S) ∪ −Id(S). �

Our next result will be used repeatedly throughout the rest of the article.

Proposition 1.15. If R is a reduced weakly nil clean ring, then U(R) is a group of at most 
two elements.

Proof. Given u ∈ U(R) we may write u = e or u = −e. In the first case u2 = u, i.e., 
u(u − 1) = 0 which by multiplying both sides with u−1 forces that u = 1. In the second 
situation u2 = −u, that is, u(u + 1) = 0. Once again multiplying by u−1 allows us to 
deduce that u = −1, as desired. �

As a valuable consequence, we obtain a complete characterization of units in weakly 
nil clean rings.

Corollary 1.16. Let R be a ring. If R is weakly nil clean, then U(R) = N(R) ± 1.

Proof. By Proposition 1.15 we have U(R/N(R)) = {1 +N(R), −1 +N(R)}, it now easily 
follows that for any r ∈ U(R) it must be that r ± 1 ∈ N(R), as required. �

We can now characterize weakly nil clean rings in general.

Theorem 1.17. Let R be a ring. The following statements are equivalent:

(i) R is a weakly nil clean ring.
(ii) R is zero-dimensional and there is at most one maximal ideal of R, say M , which 

satisfies R/M = Z3 while for all other maximal ideals N of R we have R/N = Z2.
(iii) R/N(R) is isomorphic to either a boolean ring, or Z3, or the product of two such 

rings.
(iv) J(R) is nil and R/J(R) is isomorphic to either a boolean ring, or Z3, or the product 

of two such rings.

Proof. That (i) and (iii) are equivalent follows directly from Proposition 1.9 (i) combined 
with Theorem 1.13 (ii).
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That (iii) and (iv) are equivalent follows from the fact that in either case J(R) = N(R)
because J(R/N(R)) = J(R)/N(R).

Thus we are left showing that (i) and (ii) are equivalent. For the necessity direction 
let R be a weakly nil clean ring. By Proposition 1.9 (iv), R is zero-dimensional. For 
any maximal ideal M , we know that either R/M ∼= Z2 or R/M ∼= Z3. By the Chi-
nese Reminder Theorem, for any two maximal ideals M and N of R, we know that 
R/(M ×N) ∼= (R/M) × (R/N) is weakly nil clean. We can apply Proposition 1.9 (ii) to 
finish the proof.

Next, suppose that R is zero-dimensional (hence J(R) = N(R)) and that there is 
at most one maximal ideal of R, say M , which satisfies R/M ∼= Z3 while for all other 
maximal ideals N of R we have R/N = Z2. It follows that R/N(R) = R/J(R) is 
embeddable inside of ΠM∈Max(R)(R/M); which is isomorphic to either a product of 
copies of Z2 or a product of copies of Z2 and one copy of Z3. In both cases we know that 
R/N(R) is a subring of a reduced weakly nil clean ring and hence weakly nil clean by 
Corollary 1.14. �

As an immediate consequence, we yield:

Corollary 1.18. A ring R is weakly nil clean if and only if R/N(R) is weakly nil clean if 
and only if R/J(R) is weakly nil clean and J(R) is nil.

By considering Theorem 1.12 and Corollary 1.13 of [1], we are able to say something 
interesting.

Proposition 1.19. Let R be a ring. Then R = N(R) ∪ Id(R) ∪−Id(R) if and only if either 
R = Id(R) ∪ −Id(R) or R = Z4.

Proof. For the sufficiency we simply need to show that Z4 = N(Z4) ∪ Id(Z4) ∪−Id(Z4). 
But this is clear by a direct calculation.

As to the necessity, let R be a ring for which R = N(R) ∪ Id(R) ∪ −Id(R). If R
is reduced, then R = Id(R) ∪ −Id(R) and we are done. So, we treat the case when R
is not reduced. Let 0 �= n ∈ N(R). We consider the three possible cases for the unit 
1 −n ∈ N(R) ∪ Id(R) ∪−Id(R). The unit cannot be nilpotent. If the unit is idempotent 
then 1 − n = 1 and thus n = 0. In the last case we have that the negative of the unit, 
that is again a unit, is idempotent and so 1 −n = −1. It follows now that n = 2. Since n

was assumed to be any nonzero nilpotent element, we conclude that N(R) = {0, 2} and 
0 �= 2. Since 22 = 4 ∈ N(R) we deduce that either 4 = 0 or 4 = 2. The only viable option 
is that 4 = 0. Moreover, we conclude that the characteristic of R is 4.

Next, let u ∈ U(R). Then u /∈ N(R) and so either u is an idempotent, whence u = 1, 
or otherwise u = −e for some e ∈ Id(R). But then −u is both an idempotent and a unit 
and hence −u = 1, i.e., u = −1. It follows that U(R) = {1, −1}. Since char(R) = 4, we 
infer that 1 �= −1. So we have produced at least four elements in R that are 0, 1, 2, 3. 
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If x ∈ R \ {0, 1, 2, 3} then x ∈ Id(R) or x ∈ −Id(R). Since {0, 1, 2, 3} is closed under 
negation, it follows that if R has more than 4 elements, then there is an idempotent 
e ∈ Id(R) such that e �= 0, 1.

Consider 1 + e for any idempotent e �= 0, 1. If 1 + e = 0, then e = −1 is idempotent 
which has already been established not to be the case. If 1 + e = 2, then e = 1, which we 
are assuming is not the case. If 1 + e ∈ −Id(R), then there exists f ∈ Id(R) such that 
1 + e = −f . Therefore, 3 − e = f = f2 = (3 − e)2 = 1 − 2e + e2 = 1 − e. This yields that 
1 = 3 which is not the case. Thus, for any idempotent e different that 0 and 1, one must 
have 1 + e ∈ Id(R). Also, notice that in this case 1 + e �= 0, 1. So we can make the same 
argument to conclude that 1 + (1 + e) = 2 + e is an idempotent. This last statement 
implies that 2 + e = (2 + e)2 = 4 + 4e + e = e and so 0 = 2, which gives the desired 
contradiction. Consequently, R = {0, 1, 2, 3} = Z4, as promised. �
Remark 1.20. Notice that the only difference between the equalities R = Id(R) ∪−Id(R)
and R = N(R) ∪ Id(R) ∪ −Id(R) is the inclusion of R = Z4; all of which are weakly nil 
clean. It follows that not every weakly nil clean ring satisfies this equation, e.g., R = Z8.

We next consider the generalization to R = J(R) ∪ Id(R) ∪ −Id(R). The result is 
somewhat surprising.

Proposition 1.21. Let R be a ring. Then R = J(R) ∪ Id(R) ∪ −Id(R) if and only if 
R = N(R) ∪ Id(R) ∪ −Id(R).

Proof. The sufficiency is trivial. We prove the necessity. To that aim, we first observe 
that R �= J(R) and J(R) ∩ ±Id(R) = {0}; in fact, given j ∈ J(R) ∩ Id(R), we have 
that 1 − j.j = 1 − j ∈ U(R) ∩ Id(R) = {1}, so that j = 0. In the other case, for 
j ∈ J(R) ∩ −Id(R), we have j = −e where e ∈ Id(R), whence 1 − j.(−j) = 1 + j =
1 − e ∈ U(R) ∩ Id(R) = {1} and thus j = 0, as required.

To begin, letting 0 �= j ∈ J(R), we obtain 1 − j ∈ U(R) and so 1 − j ∈ J(R) ∪ Id(R) ∪
−Id(R) which may be distributed into three possible cases:

Case 1. 1 − j ∈ J(R) gives that 1 ∈ J(R) and hence R = J(R) with 1 − 1.1 = 0 ∈ U(R)
which forces that 1 = 0, a contradiction.

Case 2. 1 − j ∈ Id(R) whence 1 − j ∈ U(R) ∩ Id(R) = {1} yields j = 0, contrary to our 
assumption.

Case 3. 1 − j ∈ −Id(R) whence j − 1 ∈ U(R) ∩ Id(R) = {1} implies j − 1 = 1, that is, 
j = 2 and so J(R) = {0, 2}. Since 4 = 22 ∈ J(R), one sees that 4 = 0 or 4 = 2, i.e., 
4 = 0 or 2 = 0 (or respectively −2 ∈ J(R) ensures that either −2 = 2 or −2 = 0, that 
is, 4 = 0 or 2 = 0). Anyway, the only possible case is 4 = 0 because 2 �= 0. That is why 
char(R) = 4.
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Next, assuming that u ∈ U(R), we observe that u /∈ J(R) (for if u ∈ J(R), it follows 
that 1 − u.u−1 = 1 − 1 = 0 ∈ U(R) which is manifestly untrue). Therefore, either 
u ∈ Id(R), hence u = 1, or u ∈ −Id(R). In the latter situation we write u = −e, 
where e ∈ Id(R). Then −u ∈ Id(R) ∩ U(R) and −u = 1, i.e., u = −1. Consequently, 
U(R) = {1, −1}. Since 4 = 0 we have 1 �= −1 and U(R) = {1, 3} where −1 = 3. 
Finally, R ⊇ {0, 1, 2, 3}. Now, given x ∈ R \ {0, 1, 2, 3}, we see that x /∈ J(R) = {0, 2}, 
hence x ∈ Id(R) or x ∈ −Id(R). The rest of the proof follows similarly to that of 
Proposition 1.19. We observe that J(R) = {0, 2} = N(R). �
2. Weakly nil clean group rings

Throughout the current section, we assume that G is a multiplicative abelian group 
and R is a commutative ring with identity. We let R[G] denote the group ring of G
over R. Let Cp denote the multiplicative cyclic group of order p. For a fixed prime p, we 
denote the p-component of G by Gp.

Commutative clean group rings were investigated in [20,16,17], respectively. On the 
other hand, it was proved in [21] that R[G] is nil clean if and only if R is nil clean and 
G = G2, that is, R is nil clean and G is a 2-group. We now characterize when R[G] is a 
weakly nil clean commutative group ring.

Theorem 2.1. Let R be a ring and G a group. The group ring R[G] is weakly nil clean if 
and only if exactly one of the following three conditions is satisfied:

(i) R is nil clean and G is a non-trivial torsion 2-group;
(ii) R/N(R) ∼= Z3 and G is a non-trivial torsion 3-group;
(iii) R is weakly nil clean and G is trivial.

Proof. Necessity. Suppose R[G] is weakly nil clean. Thus, R[G] is clean by Proposi-
tion 1.9 (iv) and in view of Proposition 1.9 (i) the ring R is weakly nil clean being 
a homomorphic image of R[G]. Therefore, G is a torsion group by virtue of Propo-
sition 2.7 of [20]. Consider R/N(R). Either R/N(R) is boolean, R/N(R) ∼= Z3, or 
R/N(R) ∼= B × Z3 for some non-trivial boolean ring B. We prove that these three 
mutually exclusive cases lead to the three conditions in the theorem.

Case 1. Suppose R/N(R) is boolean; whence R is nil clean. Thus there is a maximal ideal 
of R, say M , such that R/M ∼= Z2. Since R[G] is weakly nil clean, with Proposition 1.9 (i) 
at hand so is Z2[G/G2]. If G2 �= G, then this group ring possesses more than two units 
(since |G/G2| ≥ 3) even though it is reduced, a contradiction with Proposition 1.15. 
Therefore, G = G2 and so G is a torsion 2-group.

Case 2. Suppose R/N(R) ∼= Z3. Since R[G] is weakly nil clean, again an appeal to 
Proposition 1.9 (i) assures that so is Z3[G/G3], a reduced ring with more than two units. 
Therefore, Proposition 1.15 implies that G = G3 is a torsion 3-group.



P.V. Danchev, W.Wm. McGovern / Journal of Algebra 425 (2015) 410–422 419
Case 3. R/N(R) ∼= B × Z3 for some non-trivial boolean ring B. It follows that both 
Z2 and Z3 are homomorphic images of R. Since R[G] is weakly nil clean, in view of 
Proposition 1.9 (i), so are Z2[G/G2] and Z3[G/G3]. In both cases we arrive that G =
G2 = G3, which means G is trivial.

Sufficiency. We go case by case and show that in each case R[G] is weakly nil clean. 
The third case is trivial. The first case follows from Theorem 2.11 of [21]; in particular 
R[G] is nil clean. So assume that R/N(R) ∼= Z3 and G is a torsion 3-group. It is known 
that in this case R is local with unique maximal ideal N(R) and char(R/N(R)) = 3. By 
Theorem 19.1 of [13], it follows that R[G] is a local ring. In the proof it was shown that the 
unique maximal ideal of R[G] is the ideal N(R)[G] +I where I is the augmentation ideal 
(that is, I is generated by the set {1 − g : g ∈ G}). Moreover, it was demonstrated there 
that R[G]/(N [G] +I) ∼= Z3. Notice that the ideal N [G] +I is a nil ideal (see Theorem 9.1 
of [13]) and hence it follows that R[G] is weakly nil clean by Proposition 1.9 (i) (see also 
Theorem 1.17). �

As an immediate consequence, we yield:

Corollary 2.2.

(a) Both rings, Z3[G2] and Z2[G3], are not weakly nil clean.
(b) Both rings, Z2[G2] and Z3[G3], are weakly nil clean.

3. The Nagata ring

As usual, R[X] denotes the polynomial ring. For f ∈ R[X] the content ideal of f , 
c(f), is the (finitely generated) ideal of R generated by the coefficients of f . The Nagata 
ring of R, denoted as R(X), is the localization of R[X] at the multiplicative set U =
{f ∈ R[X] : c(f) = R}. Another interesting localization of R[X] is the one induced by 
the multiplicative set of monic polynomials. We denote this latter ring by R〈X〉. It is 
known that R[X] ⊆ R〈X〉 ⊆ R(X) (see, for instance, [3]). It is also well known that 
R[X] is never clean (cf. [14]), and therefore R[X] is never weakly nil clean. In [22] the 
authors classified when the rings R(X) and R〈X〉 are clean. Interestingly, we show that 
neither ring R(X) nor R〈X〉 is weakly nil clean.

Proposition 3.1. For any ring R, neither R(X) nor R〈X〉 is weakly nil clean.

Proof. We first show that R(X) cannot be weakly nil clean. By Proposition 1 of [2] the nil 
radical of R(X) is N(R)R(X). Moreover, it is not hard to check that R(X)/N(R)R(X) ∼=
(R/N(R))(X). Without loss of generality, we assume that R is reduced. The elements 
fn(X) = Xn are all invertible elements of R(X) for each n ∈ N and, therefore, by 
Proposition 1.15, R(X) is not weakly nil clean.
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Next, by way of contradiction assume that R〈X〉 is weakly nil clean. Then, by Propo-
sition 1.9 (i), so is R being a homomorphic image of R〈X〉. It follows now that R is 
zero-dimensional. By Theorem 17.11 of [15] or Theorem 8 of [22], R(X) = R〈X〉 so that 
R(X) is a weakly nil clean ring, a contradiction. �

It is a well-known fact that R[[X]] is (weakly) clean if and only if R is (weakly) clean 
(see, for example, [1]). However, this equivalence is not preserved for weakly nil cleanness. 
Even much more, the following is true:

Proposition 3.2. Let R be a ring. The power series ring R[[X]] is never weakly nil clean.

Proof. It can be easily checked that the element X is never weakly nil clean. In fact, it 
is well known that Id(R[[X]]) = Id(R). Moreover, it follows from [12] that if a0 + a1X +
a2X

2 + · · · + anX
n + · · · ∈ N(R[[X]]), then a0, a1, a2, · · · , an, · · · ∈ N(R). So, writing 

X = ±b0 +a1X, where b0 is an idempotent and a1X is a nilpotent, it follows that b0 = 0
while 1 = a1 ∈ N(R) which is impossible. �
4. Left-open problems

In closing, we list some unanswered questions.

Problem 1. Is an arbitrary reduced weakly nil clean ring necessarily commutative?

Problem 2. Find a criterion for when the full matrix ring Mn(R) is a weakly nil clean 
ring over an arbitrary (possibly noncommutative) ring R.

For a classification of when Mn(R) is nil clean the interested reader can see in [5]
or [18].

Problem 3. Characterize uniquely weakly nil clean rings, that is, those weakly nil clean 
rings in which the existing idempotent is unique. Does it follow that uniquely weakly nil 
clean rings are (uniquely) nil clean?

Problem 4. Characterize those rings for which every proper homomorphic image is 
(weakly) nil clean.

Problem 5. Characterize those rings R for which each element is a sum or a difference 
of elements from J(R) and Id(R), respectively.

Clearly these rings form a class that (properly) contains both the classes of semi-
boolean rings introduced in [25] and weakly nil clean rings explored above. Such rings 
could be called weakly semi-boolean.
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Problem 6. How much of what is now known about reduced weakly clean rings extends 
to reduced rings for which U(R) has at most two elements?

Added in proof

Actually, Problem 1 obviously holds in the affirmative taking into account Theo-
rem 1.12 from [1] which is valid even for arbitrary (and hence noncommutative) rings.
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