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Abstract. Usually, an abelian /-group, even an archimedean /-group, has a relatively
large infinity of distinct a-closures. Here, we find a reasonably large class with unique and
perfectly describable a-closure, the class of archimedean ¢-groups with weak unit which
are “Q-convex”. (Q is the group of rationals.) Any C(X,Q) is Q-convex and its unique
a-closure is the Alexandroff algebra of functions on X defined from the clopen sets; this is
sometimes C'(X).
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INTRODUCTION

A lattice-ordered group (or £-group for short) is a group (G, +) with a partial order
that is a lattice (infimum and supremum are denote by A and V, respectively) such
that the ordering is compatible with the group operation. That is, for all g, h, k € G
with g < h we have g + k < h + k. The set of positive elements of G is written as
GT; note that the additive identity is an element of this set.

Elements g, h € G are archimedean equivalent (or a-equivalent), denoted g ~, h,
if there exist natural numbers n, m for which ¢ < nh and h < mg. If G is an
{-subgroup of H then H is an a-extension of G if every positive element of H is
a-equivalent to a positive element of G. We write G <, H in this case. The
divisible hull of an abelian /-group is an a-extension, for example. If G has no proper
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a-extension, then G is a-closed. By Holland’s Embedding Theorem, a-closures exist
(see [7]); however, a-closures are not necessarily unique (see [4]).

Throughout, we use N, @ and R to represent the naturals, rationals and reals,
respectively.

Over the past 30 years, several researchers have sought a-closures in various classes
of ¢-groups. Recently, the authors of [6] sought a-closures via valuation mappings of
an ¢-group onto a distributive lattice. Also, in [14] the authors considered a class of
¢-groups that generalizes the class of hyperarchimedean ¢-groups (see also [5]) and
determined the a-closures of these groups. In particular, they explicitly describe the
a-closures of C(X,Z), the ring of continuous integer-valued functions on X. In the
present article we are interested in determining a-extensions and a-closures of certain
more general objects in the category, W, of archimedean ¢-groups with weak unit.

In this section we introduce standard concepts needed throughout the paper.

The ¢-group G is archimedean if whenever 0 < g < nh for all n € N, then g = 0.
All archimedean ¢-groups are necessarily abelian. This is explained in [7].

An element u € G is a weak order unit if uA g = 0 implies g = 0. W denotes the
category whose objects are the archimedean /-groups with designated weak order
unit and whose morphisms are the lattice-preserving group homomorphisms that
also preserve the unit. (G, u) denotes an object in W.

Recall that an ¢-subgroup K < G is convex if 0 < g < k € K implies that g € K.
Let (G,u) be a W-object. By Zorn’s Lemma, there exist convex ¢-subgroups of G
that are maximal with respect to not containing u. We let YG denote the set of
these. In the hull-kernel topology, Y G is a compact Hausdorff space. Define

D(YG)={f: YG — RU{+oc}: f is continuous and f 'R C YG is dense}.

Though D(Y Q) is rarely a group under pointwise addition, it is known that G may be
mapped bijectively, via an ¢-group isomorphism, onto an ¢-group G of D(Y G), which
maps u to the constant function 1 and so that the elements of G separate the points
of YG. This representation is unique: If G = G < D(X) is an /-isomorphism with
X compact Hausdorff and @ = 1, then there is a continuous surjection 7: X — Y G
such that § = go7 for each g € GG; moreover, G separates the points of X if and only
if 7 is a homeomorphism. We identify G with its image G. This representation is
the “Yosida Embedding” (see [21] and [16]) and Y'G is called the Yosida space of G.

We now turn to topological considerations and to C'(X), the {-group of real-valued
continuous functions on the space X with the pointwise ordering. See [9] for details.

We assume that all spaces are Tychonoff, that is, completely regular and Hausdorff.
BX denotes the Stone-Cech compactification of X, and we note that the Yosida space
of C(X) is homeomorphic to fX. C*(X) is the f-subgroup containing the bounded
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elements of C'(X). There is a natural isomorphism between C*(X) and C(8X),
given by extension (and inversely, restriction) of functions to X (inversely, to X).
Whenever C(X) = C*(X), we call X pseudocompact.

Recall that a space is called zero-dimensional if it has a base of clopen sets and
that every zero-dimensional space has a maximal zero-dimensional compactification
called the Banaschewski compactification (see [20]) denoted by 89X . The space Gy X
is homeomorphic to the Yosida spaces of C(X,Z) and C(X,Q) and the map Sy is
the compact zero-dimensional reflection. When X = [y X, the space X is zero-

dimensional and we call X strongly zero-dimensional.

2. UNIQUE a-CLOSURE AND CONVEX /-GROUPS

Let (G,u) be in W and g € G. The zeroset of g is Z(g) = {p € YG: g(p) = 0}
and the cozeroset of g is YG \ Z(g). We use Z°G to denote the set of all zerosets
of G.

Theorem 2.1. Let (G,u) be in W. If G <, H then G majorizes H (that is,
for every h € H™T there exists g € G such that h < g); u is a weak unit in H,
Y(G,u) = Y(H,u) and in the Yosida representation G < H < D(Y(G,u)) and
ZH=2G.

Proof. Let (G,u) be in W and assume that G <, H. That G majorizes H
follows directly from the definition of a-extension. If there is h € H* such that
uw /A h =0, then for any g € G such that g ~, h, we have that uAg = 0. Hence g =0
and 0 < h < mg = 0 for some m and therefore, h = 0. It follows from Theorem 2.1
of [4] that Y(G,u) =Y (H,u); hence, G < H < D(Y(G,u)) and ZH = ZG. O

For g € G, let gt =gV 0and g = (—g) V0. Then g = g* — g~ and we define
lgl=9"+g".

Definition 2.2. Let (G,u) be in W.
(a) G°={f e DYG): |f| <g for some g € G}.
(b) From [2]: G is convez if G = G°.

G¢ is usually not an ¢-group, as we discuss shortly.

Corollary 2.3. In W:
(a) If G <, H then H C G°.
(b)
(¢) If G° is an {-group and if G <, G° then G° is the unique a-closure of G.
(d) If H is convex and G <, H, then H is the unique a-closure of G.

If G is convex, then G is a-closed.

411



Proof. Tt is clear that Theorem 2.1 implies statements (a) and (b) which
together imply (c). To verify (d), note that G <, H implies H C G° by (a). But
also, G¢ C H® = H. Thus, G° = H, and (c) applies. |

The statement of Corollary 2.3 (¢) and (d) present us with the following two ver-
sions of the same questions, which the sequel examines.

Question 2.4. Let G be an archimedean ¢-group.
1. (a) For which G is G° an ¢-group?
(b) For which G is G¢ an {-group and G <, G°?
2. For convex H, what W-subobjects G have G <, H?

The following compendium from the literature illustrates what the class of convex
{-groups encompasses. Recall that an f-ring is a subdirect product of totally ordered
rings, [3].

Theorem 2.5. For the following classes of W-objects, for each n, the class (n)
is contained the class (n + 1).
(1) Rings of continuous functions, C(X).
(2) Alexandroff algebras: (-subalgebras of RX containing 1 that are closed under
uniform convergence and inversion (see § 5 below).
3)
(4) Archimedean f-rings with identity, that are divisible and uniformly complete.
(5)

‘W -objects closed under countable composition.

Convex W -objects.

Proof. That (1) C (2) is clear; (2) C (3) C (4) can be found in [18]; and
(4) C (5) is in [17]. (One has to recognize that the representation in [17] and [18] of
an f-algebra is the Yosida representation of the underlying W-object). (I

As a class of study, “convex” was introduced in [2], and there shown to be monore-
flective in W: for each (G, u) there is a group ¢G such that G < ¢G with ¢G convex
such that each ¢: G — H in W with H convex has a unique extension cp: ¢G — H
in W. Usually, YcG is much larger than YG, but it is easy to see that if G¢ is an
{-group then G¢ = cG.

Remark 2.6. (a) Recall that V € YG is real if G/V — R and ZG C YG
denotes the set of all such points. Let G|z = {g9|#zc: g € G}. In Theorem 2.1
and Corollary 2.3 (a), suppose that ((ZG = (0), so that G|zc C C(ZG) is a
representation of G; then G°4e C C(ZG) also and G <, H implies that H C
C(#£G). Within the category W, this sharpens an observation in Example 6.2 of [4].

(b) By Theorem 2.5, C'(X) is convex for any X. Here’s another proof: The Yosida
embedding of C'(X) is given by {Bf € D(BX): f € C(X)}, therefore, C(X)°¢ =
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C(X). Thus, by Corollary 2.3 (b), C(X) is convex. This improves Example 6.2 of [4]
in which Conrad shows that C'(X) is a-closed.

(c) If G is hyperarchimedean, then the converse of Theorem 2.1 holds (see [13]),
but the converse fails in general. Let aN be the one-point compactification of N
and let G < C(aN) be given by g € G if and only if there exist r, s € R such that
eventually g(n) = r + s/n. Then ZG = ZC(aN), though G is not a-extended
by C(aN) since f(n) = e~ /" € C(aN) has no a-equivalent element in G.

3. RELATIVELY CONVEX /-GROUPS

Definition 3.1. Let A be a subgroup of R containing 1 and (G, ) in W.
(a) For a compact Hausdorff space X, let

Ds(X)={feD(X): flp) eR= f(p) € A}.

(b) G is A-convez if for f € Ds(YG), |f| < g € G implies f € G. When A # R,
we assume that Y'G is zero-dimensional.

() WaG =GN DAYG).

Note that an A-convex group is Z-convex. In fact, we are really only interested in
Z- and Q-convex objects.

In this section, we show that G is A-convex if and only if G¢ is a convex ¢-group
for which YG® = Y G is zero-dimensional and

WaG =WaG® < G <G

This relates the two queries in Question 2.4 and addresses Question 2.4.1(a). We
also note the rarity of WzG <, G.

In the next section we show that Wg G <, G for convex groups G. Thus, Q-convex
is the answer to Question 2.4.

Remark 3.2. The operator Wy is studied in [15], there denoted W,. It is a
coreflection of W onto the full subcategory whose objects satisfy G = WG (called
singular). The situation with W, is analogous, but we won’t pursue that here. Note

that Z-convexity is an extension of the singularly conver condition in [14].
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Proposition 3.3. G° is an ¢-group (hence it is convex and YG® = YG) if and
only if B3¢ 'R = Y G for each g € G.

Proof. =: Suppose that g~ 'R is not C*-embedded (without loss of generality,
we may take g € GT), say f € C*(g ' R) fails to extend over YG. Choose m > |h|
and define h(x) = f(z) + g(z) if x € g7 'R and f(z) = +oo if z ¢ g~ 'R. Then
|h| < g+ m € G, so that h € G°. But h — g ¢ D(YG), so G° is not closed under
addition.

<«: The lattice operations are inherited from D(Y'G). Suppose that f; € D(YG)
with |fi| < g; € GT for i = 1,2. Then f; 'R D g; 'R so that

fit f2€Clg7 'RN gy 'R).

Since g7 'R N g5 'R = (|g1] + |g2]) 'R and we assume that this set is C*-embedded,
we have the extension to h € D(YG) and |h| < g1 + g2 (since that holds on the dense
set g 'R N gy 'R). Thus h € G¢ and h = f, + fo in G°. O

Proposition 3.4. Suppose that G is Z-convex.
(a) If g € GT and there is 0 < r € R such that g(x) > 0 implies g(z) > r, then
there is f € WG such that f ~, g.
(b) For all g € G, there exists f € WG such that f 'R = g~ R.
(c) Forallg € G, Bg7'R =YG.
(d) G¢ is a convex ¢-group with YG¢ =YG.

Proof. The definition of Z-convex includes the assumption that Y'G is zero-
dimensional, so any g~ 'R is zero-dimensional and Lindelsf, thus strongly zero-
dimensional. See [9] and [20].

(a) Without loss of generality, r > 3. For every n > 3, choose a clopen set U,
with g7 1[n —1,n+1] C U, C g~ *(n —2,n + 2) so that

n—2< Aglo. <\ alv, <n+2.
n n

Let V, = U, \ U Uj. Then the functions g|y, retain the preceding inequalities and
j<n
g 'R = Z(g) L, Van- Clearly, this set is open.
Now define f € Dz(YG) by flv, =n —2, flyg—g-1r = +00 and f|z(5 = 0. So

then f < g on ¢ 'R and hence, f < g. Also
glv, Sn+2=Mm-2)+4=fly, +4.

Then g < f+4 <5f, since 1 < f.
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(b) Apply (a) to |g| vV 3 to get f.

(c) Since g~!R is strongly zero-dimensional, it suffices to demonstrate that any
heC(g7'R,{0,1})" extends over YG. See [9] and [20]. By (b), we can assume that
g € WzG. Define f € Dz(YG) by f(x) = g(x) + h(z) if z € g7'R and f(z) = +o0,
otherwise. Then f < g+ 2 € G. Since G is Z-convex, f € G. Thus, g — f € G and
this is the desired extension of h.

(d) By (c) and Proposition 3.3. O

Theorem 3.5. Let A be a proper subgroup of R containing 1.
(a) If H is convex with Y H zero-dimensional, then W H is A-convex and H =
(WA H)e.
(b) If G is A-convex, then G is a convex {-group with Y G° zero-dimensional and
Wa (GC) <.

Proof. (a)If YH is zero-dimensional, then C(Y H, Z) separates points of Y H.
Since C(YH,Z) < WzH < WaH, the group W H also separates points of Y H and
thus YW H = Y H. Now suppose that H is convex and f € Da(YW4H), such that
|f] < g € WaH for some g. Then f € D(YH) and |f| < g € H. Since H is convex,
f € H. Since also f € D4(YH), we have that f € W4 H and, hence, W4 H is
convex.

We know that Wy H C H and so (W4 H)¢ C H since H is convex. For the reverse,
H* C (WzH)¢ by Proposition 3.4 (a); so H C (WzH)® since the larger set is an
¢-group by the above and by Proposition 3.4 (d). Since we have the containment
(WzH)° C (W4aH)®, the proof is complete.

(b) Assume that G is A-convex. Since Z < A, G is Z-convex, so Proposition 3.4 (d)
applies. Let f € W4G°, that is, f € Da(YG®) and |f| < g € G°. Thus, |f| < g <
g’ € G. Since G is A-convex, f € G. O

Corollary 3.6. Let A be a proper subgroup of R containing 1.

(a) The following are equivalent:
(a1) H is convex with Y H zero-dimensional.
(ag) H = G° for some A-convex G.
(ag) H = G° for a unique A-convex G with G = WG, namely G = WsH.

(b) The following are equivalent:
(b1) G is A-convex.
(b2) WaH < G < H for some convex H with Y H zero-dimensional; such an H

is unique, namely H = G°.

Proof. (a3)= (ag2) is clear and (az) = (a1) by Theorem 3.5 (b).
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(a1) = (as): We know that H = (W4 H)® by Theorem 3.5 (a). If also H = G° for
some A-convex G = W4 @G, then

WyH = WA(GC) <G <WYG L WA(GC),

using Theorem 3.5 (b) and the fact that G < G¢ implies that WaG < WAG*©.

(b1) = (b2): Assume that G is A-convex. By Theorem 3.5 (a), if H satisfies (bz)
then H = G° and by Theorem 3.5 (b) G¢ does satisfy (bz).

(b2) = (b1): Suppose that G and H satisfy (bg). Then YG = YH and if f €
DA(YG) with |f| < g € G then f € WaH so f € G. Thus, G is A-convex. O

Remark 3.7. (a) Proposition 3.3 is the content of Remark 2.6 (e) in [2], where
no proof was given.

(b) Proposition 3.4 is related to a lemma in [2].

(c) A W-object (G, u) for which every g € G satisfies the hypothesis of Proposi-
tion 3.4 (a) is called bounded away. So we have shown that when G is Z-convex and
bounded away, WzG <, G. This is closely related to Corollary 4.5 of [14].

In Proposition 3.4 (a), the bounded away condition can not be dropped: Let X be a
compact and zero-dimensional space, then C(X) is Z-convex. However, WzC(X) =
C(X,Z) and C(X, Z) <, C(X) if and only if X is finite. (See [13].)

(d) In fact, for H convex, Wz H <, H if and only if Y H is finite (whence H = R™
for some n € N): sufficiency is easy to show, so let’s show necessity. If H is convex,
then H* = C(YH) and if Wz H <, H, then

C(YH,Z)=WzH* = (WzH)* <, H* = C(YH)

and we have the situation of the above. So Y H is finite.

(e) Proposition 3.4 shows that Z-convex answers Question 2.4.1 (a), while Corol-
lary 3.6 and Remark (d) above show that Z-convex fails to answer Question 2.4.1 (b),
equivalently, the condition Wz H = G fails to answer Question 2.4.2.

4. THE MAIN THEOREM

We now replace Z by Q.
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Theorem 4.1. In W:
(a) If H is convex with Y H zero-dimensional, then W H <, H and H is the unique
a-closure of Wg H .
(b) If G is Q-convex, then G <, G¢, so G is the unique a-closure of G.
(¢) If H is Q-convex, then Wo H <, H.

Proof. By §3, (a) and (b) two are the same statement, so we prove (a).
Statement (c) is a direct consequence of (a) and (b).

Let H be convex with Y H zero-dimensional and h € H™. Choose a clopen set
U C YH with h71[0,4] C U C h7'[0,1). Let hi(p) = h(p) if p € U, h1(p) = 0
otherwise and let ha(p) = h(p) if p ¢ U and ha(p) = 0 if p € U. Since U is clopen,
hi,ha € D(YH) and since 0 < hy,ho < h, and H is convex, hy, hy € H. It suffices
to find g1, g2 € Wo HT with g; ~4 h; when i = 1,2 and then gy + g2 ~¢ h1 + ho = h.

Now hz(p) > 0 implies that ha(p) > 1.
Wy H with gs ~g ho.

For i = 1: since H is convex, H* = C(Y H). We finish by using the following
Lemma (with f = hq). O

So by Proposition 3.4 (a), there is g2 €

Lemma 4.2. If X is compact and zero-dimensional and f € C(X) such that
0 < f <1, then there is g € C(X,Q) with g ~, f.

Proof. By induction, choose clopen sets Ky 2O Ky O ... as follows: Ky = X
and for each n,

f7o,1/2" M € K € K, 0 fH0,1/27),

Then we see that Z(f) = [ Kn,

1/2"% < flreippn <1/277

and coz(f) = U(Kp \ Knt1). Define g € C(X,Q) by g(x) = 0 when = € Z(f) and
g(z) =1/2""! when z € K,, \ K,11. Then g < f and f < 4g. Thus, g ~, f. O

5. ALEXANDROFF ALGEBRAS AND C(X,Q)

Throughout, we assume that X is zero-dimensional; otherwise, C(X,Q) may be
too small.
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Theorem 5.1. Suppose X is zero-dimensional.
(a) Each g € C(X,Q) has an extension § € D(6oX), and {g: g € C(X,Q)} is the
Yosida representation. In particular, YC(X,Q) = S X.
(b) (X Q) is Q-convex and so has a unique a-closure C'(X,Q)°.
(c) WaC(X) = WaC(X, Q) and WaC(X) <, C(X, Q).
(d) WaC(X)=C(X,Q) if and only if X is pseudocompact.

Proof. (a) Consider the commutative diagram of continuous functions:

X (X

L

Q—— 50 =0

|k

R —— RU{+xo0}

in which Byg exists with Byg|x = g, because [y is the reflection functor to compact
zero-dimensional spaces. Since () is strongly zero-dimensional, we have that 5yQ =
BQ. Then f is the extension of the inclusion @ — R C RU{+oo}, and g = fofyg €
D(BoX).

We have C(X,Q) O C*(X,Z) = C(BuX,Z), and the last separates the points
of By X, thus so does {§: g € C(X,Q)} hence this is the Yosida representation.

~_(b) Let f € Do(fBoX) and |f| < g, where g € C(X, Q). Then f|x € C(X,Q) and
f | x = f. Thus, C(X,Q) is Q-convex. Then C(X,Q)¢ is the unique a-closure by
Theorem 4.1.

(¢) Since C(X,Q) < C(X) we have W C(X,Q) < WgC(X). For the reverse,
let f € WoC(X). This means that f = B¢ for f|x = g € C(X) and for p € X,
whenever f(p) € R necessarily means that f(p) € Q. Thus g € C(X,Q). We have
f =Bg = gop, where p: BX — [y X is the canonical map. Then whenever §(q) € R,
we necessarily have that §(¢q) € Q for all g € S X.

That Wg C(X) <, C(X,Q) follows from (b) and Theorem 4.1.

(d) By (¢), having WoC(X) = C(X,Q) is equivalent to having the inclusion
WaC(X) 2 C(X,Q), which means that for f € D(6pX), f(X) C Q implies
fli-r € Q.

Suppose that X is pseudocompact, f € D(5pX) and f(X) C Q. Then f(X) is a
pseudocompact subset of @, hence compact, so f IR = 30X and f(5X) = f(X) C
Q.

Suppose that X is not pseudocompact. Then, since X is zero-dimensional, X =
(J U, for nonempty pairwise disjoint clopen sets U,. Let x,, — r in R with z,, € Q
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and r ¢ Q, and define g € C(X,Q) by g|lu, = x». Then the extension § € D(GpX)
must have §(p) = r for some p therefore g ¢ Wg C(X). O

Corollary 5.2. C(X,Q)° = C(X) (equivalently, C(X,Q) <, C(X)) if and only
if X is strongly zero-dimensional.

We now describe C(X,Q)°, in general.

If X is zero-dimensional, let clop(X) be the Boolean algebra of clopen sets of X
Then for U € clop(X), the map U — clU € clop(fpX) is its Stone representation.

Define (clop(X))s = {{JUn: Uy € clop(X)}. Clearly, (clop(X)), C coz(X), with

equality if and only if X is strongly zero-dimensional. In fact,
(clop(X))e ={KNX: K € coz(BoX)}.

Define A(X) = {f € R*: f~!K € (clop(X)), for K C R open}. Then A(X) is
a W-object and A(X) < C(X) with equality if and only if X is strongly zero-
dimensional. See §7 of [10] for a discussion.

Theorem 5.3.
(a) A(X) is of the type in Theorem 2.5.(2), thus is convex.
(b) C(X,Q) < A(X) and for each f € A(X) there is a sequence of functions
{gn}2, € C(X,Q) such that g, — f uniformly on X.
(c) Each f € A(X) has an extension f € D(6oX) and {f: f € A(X)} is the Yosida
representation. In particular, Y A(X) = o X.
(d) WoA(X) = WaC(X) < C(X,Q) < A(X).
(e) A(X)=C(X,Q)¢, that is, A(X) is the unique a-closure of C(X, Q).
Proof. (a) This is easily verified, or one may see §7 of [10].
(b) Let g € C(X,Q) and let A be an open set in R. Since @ is strongly zero-
dimensional, AN Q = (JU, for clopen sets U, € Q. Thus, we can write g~!4 =
Ug™'Un € (clop(X))o-

Let f € A(X) and € > 0. Let o/ be a countable cover of R by open intervals
of length less than . So, for A € &7, f~'A = |JU(n, A) for clopen U(n, A) and

% ={U(n,A): Aec o/,neN, U(n,A) # 0} is a countable cover of X by clopen
sets. We re-index the sets as % = {U,} and disjointify: V,, = U, \ U U;. Let

<n
YV ={Vuln.
For each A € &7, choose 74 € ANQ. Let g = > {raxv,: Vo € ¥}, where yy, is

the characteristic function of V,,. Then g € C(X,Q) and |g(z) — f(z)| < & for each
rzeX.
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(¢) The extensions f exist by Theorem 5.1 (a) and the fact that a uniform limit
of extendible functions is extendible. These extensions separate the points, since the
extensions § for g € C'(X,Q) do. The rest follows from this.

(d) This follows from Theorem 5.1 (c) and from C'(X,Q) < A(X) < C(X).

(e) By (a), (d) and §4. O

Remark 5.4. (a) Theorem 5.3 (a), (b), and (c) are implicit in § 7 of [11].

(b) From a more general perspective, (clop(X)), is an example of what is called
a cozero field, A(X) is its associated Alezandroff algebra, and Theorem 2.5 (2) is a
characterization of such things. One may see [10], [11], [12] and the original references
therein to Hausdorff, Lebesgue and A.D. Alexandroff.
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