UNIQUE *a*-CLOSURE FOR SOME *l*-GROUPS OF RATIONAL VALUED FUNCTIONS

ANTHONY W. HAGER, Middletown, CHAWNE M. KIMBER, Easton, and WARREN W. MCGOVERN, Bowling Green

(Received July 26, 2002)

Abstract. Usually, an abelian ℓ -group, even an archimedean ℓ -group, has a relatively large infinity of distinct *a*-closures. Here, we find a reasonably large class with unique and perfectly describable *a*-closure, the class of archimedean ℓ -groups with weak unit which are "Q-convex". (Q is the group of rationals.) Any C(X, Q) is Q-convex and its unique *a*-closure is the Alexandroff algebra of functions on X defined from the clopen sets; this is sometimes C(X).

 $\mathit{Keywords}:$ archimedean lattice-ordered group, $\mathit{a}\text{-}\mathit{closure},$ rational-valued functions, zero-dimensional space

MSC 2000: 06F20, 06F25, 20F60, 54C30, 54F65

INTRODUCTION

A lattice-ordered group (or ℓ -group for short) is a group (G, +) with a partial order that is a lattice (infimum and supremum are denote by \wedge and \vee , respectively) such that the ordering is compatible with the group operation. That is, for all $g, h, k \in G$ with $g \leq h$ we have $g + k \leq h + k$. The set of positive elements of G is written as G^+ ; note that the additive identity is an element of this set.

Elements $g, h \in G^+$ are archimedean equivalent (or a-equivalent), denoted $g \sim_a h$, if there exist natural numbers n, m for which $g \leq nh$ and $h \leq mg$. If G is an ℓ -subgroup of H then H is an a-extension of G if every positive element of H is a-equivalent to a positive element of G. We write $G \leq_a H$ in this case. The divisible hull of an abelian ℓ -group is an a-extension, for example. If G has no proper

a-extension, then G is *a*-closed. By Holland's Embedding Theorem, *a*-closures exist (see [7]); however, *a*-closures are not necessarily unique (see [4]).

Throughout, we use $\mathbb{N},\ \mathbb{Q}$ and \mathbb{R} to represent the naturals, rationals and reals, respectively.

Over the past 30 years, several researchers have sought *a*-closures in various classes of ℓ -groups. Recently, the authors of [6] sought *a*-closures via valuation mappings of an ℓ -group onto a distributive lattice. Also, in [14] the authors considered a class of ℓ -groups that generalizes the class of hyperarchimedean ℓ -groups (see also [5]) and determined the *a*-closures of these groups. In particular, they explicitly describe the *a*-closures of $C(X, \mathbb{Z})$, the ring of continuous integer-valued functions on X. In the present article we are interested in determining *a*-extensions and *a*-closures of certain more general objects in the category, **W**, of archimedean ℓ -groups with weak unit.

In this section we introduce standard concepts needed throughout the paper.

The ℓ -group G is archimedean if whenever $0 \leq g \leq nh$ for all $n \in \mathbb{N}$, then g = 0. All archimedean ℓ -groups are necessarily abelian. This is explained in [7].

An element $u \in G^+$ is a weak order unit if $u \wedge g = 0$ implies g = 0. W denotes the category whose objects are the archimedean ℓ -groups with designated weak order unit and whose morphisms are the lattice-preserving group homomorphisms that also preserve the unit. (G, u) denotes an object in W.

Recall that an ℓ -subgroup $K \leq G$ is *convex* if $0 \leq g \leq k \in K$ implies that $g \in K$. Let (G, u) be a W-object. By Zorn's Lemma, there exist convex ℓ -subgroups of G that are maximal with respect to not containing u. We let YG denote the set of these. In the hull-kernel topology, YG is a compact Hausdorff space. Define

 $D(YG) = \{f \colon YG \to \mathbb{R} \cup \{\pm \infty\} \colon f \text{ is continuous and } f^{-1}\mathbb{R} \subseteq YG \text{ is dense}\}.$

Though D(YG) is rarely a group under pointwise addition, it is known that G may be mapped bijectively, via an ℓ -group isomorphism, onto an ℓ -group \hat{G} of D(YG), which maps u to the constant function 1 and so that the elements of \hat{G} separate the points of YG. This representation is unique: If $G \cong \tilde{G} \leq D(X)$ is an ℓ -isomorphism with X compact Hausdorff and $\tilde{u} = 1$, then there is a continuous surjection $\tau \colon X \to YG$ such that $\tilde{g} = \hat{g} \circ \tau$ for each $g \in G$; moreover, \tilde{G} separates the points of X if and only if τ is a homeomorphism. We identify G with its image \hat{G} . This representation is the "Yosida Embedding" (see [21] and [16]) and YG is called the *Yosida space* of G.

We now turn to topological considerations and to C(X), the ℓ -group of real-valued continuous functions on the space X with the pointwise ordering. See [9] for details.

We assume that all spaces are Tychonoff, that is, completely regular and Hausdorff. βX denotes the Stone-Čech compactification of X, and we note that the Yosida space of C(X) is homeomorphic to βX . $C^*(X)$ is the ℓ -subgroup containing the bounded

elements of C(X). There is a natural isomorphism between $C^*(X)$ and $C(\beta X)$, given by extension (and inversely, restriction) of functions to βX (inversely, to X). Whenever $C(X) = C^*(X)$, we call X pseudocompact.

Recall that a space is called *zero-dimensional* if it has a base of clopen sets and that every zero-dimensional space has a maximal zero-dimensional compactification called the *Banaschewski compactification* (see [20]) denoted by $\beta_0 X$. The space $\beta_0 X$ is homeomorphic to the Yosida spaces of $C(X, \mathbb{Z})$ and $C(X, \mathbb{Q})$ and the map β_0 is the compact zero-dimensional reflection. When $\beta X = \beta_0 X$, the space βX is zerodimensional and we call X strongly zero-dimensional.

2. Unique *a*-closure and convex ℓ -groups

Let (G, u) be in **W** and $g \in G$. The *zeroset* of g is $Z(g) = \{p \in YG : g(p) = 0\}$ and the *cozeroset* of g is $YG \setminus Z(g)$. We use $\mathscr{Z}G$ to denote the set of all zerosets of G.

Theorem 2.1. Let (G, u) be in **W**. If $G \leq_a H$ then G majorizes H (that is, for every $h \in H^+$ there exists $g \in G^+$ such that $h \leq g$); u is a weak unit in H, Y(G, u) = Y(H, u) and in the Yosida representation $G \leq H \leq D(Y(G, u))$ and $\mathscr{Z}H = \mathscr{Z}G$.

Proof. Let (G, u) be in **W** and assume that $G \leq_a H$. That G majorizes H follows directly from the definition of a-extension. If there is $h \in H^+$ such that $u \wedge h = 0$, then for any $g \in G$ such that $g \sim_a h$, we have that $u \wedge g = 0$. Hence g = 0 and $0 \leq h \leq mg = 0$ for some m and therefore, h = 0. It follows from Theorem 2.1 of [4] that Y(G, u) = Y(H, u); hence, $G \leq H \leq D(Y(G, u))$ and $\mathscr{Z}H = \mathscr{Z}G$.

For $g \in G$, let $g^+ = g \vee 0$ and $g^- = (-g) \vee 0$. Then $g = g^+ - g^-$ and we define $|g| = g^+ + g^-$.

Definition 2.2. Let (G, u) be in W. (a) $G^c = \{f \in D(YG) : |f| \leq g \text{ for some } g \in G\}.$

(b) From [2]: G is convex if $G = G^c$.

 G^c is usually not an $\ell\text{-}\mathrm{group},$ as we discuss shortly.

Corollary 2.3. In W:

- (a) If $G \leq_a H$ then $H \subseteq G^c$.
- (b) If G is convex, then G is a-closed.

(c) If G^c is an ℓ -group and if $G \leq_a G^c$ then G^c is the unique a-closure of G.

(d) If H is convex and $G \leq_a H$, then H is the unique a-closure of G.

Proof. It is clear that Theorem 2.1 implies statements (a) and (b) which together imply (c). To verify (d), note that $G \leq_a H$ implies $H \subseteq G^c$ by (a). But also, $G^c \subseteq H^c = H$. Thus, $G^c = H$, and (c) applies.

The statement of Corollary 2.3(c) and (d) present us with the following two versions of the same questions, which the sequel examines.

Question 2.4. Let G be an archimedean ℓ -group.

- 1. (a) For which G is G^c an ℓ -group?
- (b) For which G is G^c an ℓ -group and $G \leq_a G^c$?
- 2. For convex H, what W-subobjects G have $G \leq_a H$?

The following compendium from the literature illustrates what the class of convex ℓ -groups encompasses. Recall that an *f*-ring is a subdirect product of totally ordered rings, [3].

Theorem 2.5. For the following classes of **W**-objects, for each n, the class (n) is contained the class (n + 1).

- (1) Rings of continuous functions, C(X).
- (2) Alexandroff algebras: ℓ -subalgebras of \mathbb{R}^X containing 1 that are closed under uniform convergence and inversion (see § 5 below).
- (3) W-objects closed under countable composition.
- (4) Archimedean f-rings with identity, that are divisible and uniformly complete.
- (5) Convex W-objects.

Proof. That $(1) \subseteq (2)$ is clear; $(2) \subseteq (3) \subseteq (4)$ can be found in [18]; and $(4) \subseteq (5)$ is in [17]. (One has to recognize that the representation in [17] and [18] of an *f*-algebra is the Yosida representation of the underlying **W**-object).

As a class of study, "convex" was introduced in [2], and there shown to be monoreflective in W: for each (G, u) there is a group cG such that $G \leq cG$ with cG convex such that each $\varphi \colon G \to H$ in W with H convex has a unique extension $c\varphi \colon cG \to H$ in W. Usually, YcG is much larger than YG, but it is easy to see that if G^c is an ℓ -group then $G^c = cG$.

Remark 2.6. (a) Recall that $V \in YG$ is real if $G/V \hookrightarrow \mathbb{R}$ and $\mathscr{R}G \subseteq YG$ denotes the set of all such points. Let $G|_{\mathscr{R}G} = \{g|_{\mathscr{R}G} \colon g \in G\}$. In Theorem 2.1 and Corollary 2.3 (a), suppose that $\bigcap \mathscr{R}G = (0)$, so that $G|_{\mathscr{R}G} \subseteq C(\mathscr{R}G)$ is a representation of G; then $G^c|_{\mathscr{R}G} \subseteq C(\mathscr{R}G)$ also and $G \leq_a H$ implies that $H \subseteq C(\mathscr{R}G)$. Within the category \mathbf{W} , this sharpens an observation in Example 6.2 of [4].

(b) By Theorem 2.5, C(X) is convex for any X. Here's another proof: The Yosida embedding of C(X) is given by $\{\beta f \in D(\beta X): f \in C(X)\}$, therefore, $C(X)^c =$

C(X). Thus, by Corollary 2.3 (b), C(X) is convex. This improves Example 6.2 of [4] in which Conrad shows that C(X) is *a*-closed.

(c) If G is hyperarchimedean, then the converse of Theorem 2.1 holds (see [13]), but the converse fails in general. Let $\alpha \mathbb{N}$ be the one-point compactification of \mathbb{N} and let $G \leq C(\alpha \mathbb{N})$ be given by $g \in G$ if and only if there exist $r, s \in \mathbb{R}$ such that eventually g(n) = r + s/n. Then $\mathscr{Z}G = \mathscr{Z}C(\alpha \mathbb{N})$, though G is not a-extended by $C(\alpha \mathbb{N})$ since $f(n) = e^{-1/n} \in C(\alpha \mathbb{N})$ has no a-equivalent element in G.

3. Relatively convex ℓ -groups

Definition 3.1. Let A be a subgroup of \mathbb{R} containing 1 and (G, u) in W. (a) For a compact Hausdorff space X, let

$$D_A(X) = \{ f \in D(X) \colon f(p) \in \mathbb{R} \Rightarrow f(p) \in A \}.$$

- (b) G is A-convex if for $f \in D_A(YG)$, $|f| \leq g \in G$ implies $f \in G$. When $A \neq \mathbb{R}$, we assume that YG is zero-dimensional.
- (c) $W_A G = G \cap D_A(YG).$

Note that an A-convex group is Z-convex. In fact, we are really only interested in Z- and \mathbb{Q} -convex objects.

In this section, we show that G is A-convex if and only if G^c is a convex ℓ -group for which $YG^c = YG$ is zero-dimensional and

$$W_A G = W_A G^c \leqslant G \leqslant G^c.$$

This relates the two queries in Question 2.4 and addresses Question 2.4.1 (a). We also note the rarity of $W_Z G \leq_a G$.

In the next section we show that $W_{\mathbb{Q}}G \leq_a G$ for convex groups G. Thus, Q-convex is the answer to Question 2.4.

Remark 3.2. The operator W_Z is studied in [15], there denoted \mathbf{W}_s . It is a coreflection of \mathbf{W} onto the full subcategory whose objects satisfy $G = W_Z G$ (called *singular*). The situation with W_A is analogous, but we won't pursue that here. Note that Z-convexity is an extension of the *singularly convex* condition in [14].

Proposition 3.3. G^c is an ℓ -group (hence it is convex and $YG^c = YG$) if and only if $\beta g^{-1} \mathbb{R} = YG$ for each $g \in G$.

Proof. \Rightarrow : Suppose that $g^{-1}\mathbb{R}$ is not C^* -embedded (without loss of generality, we may take $g \in G^+$), say $f \in C^*(g^{-1}\mathbb{R})$ fails to extend over YG. Choose $m \ge |h|$ and define h(x) = f(x) + g(x) if $x \in g^{-1}\mathbb{R}$ and $f(x) = +\infty$ if $x \notin g^{-1}\mathbb{R}$. Then $|h| \le g + m \in G$, so that $h \in G^c$. But $h - g \notin D(YG)$, so G^c is not closed under addition.

 \Leftarrow : The lattice operations are inherited from D(YG). Suppose that $f_i \in D(YG)$ with $|f_i| \leq g_i \in G^+$ for i = 1, 2. Then $f_i^{-1} \mathbb{R} \supseteq g_i^{-1} \mathbb{R}$ so that

$$f_1 + f_2 \in C(g_1^{-1}\mathbb{R} \cap g_2^{-1}\mathbb{R}).$$

Since $g_1^{-1}\mathbb{R} \cap g_2^{-1}\mathbb{R} = (|g_1| + |g_2|)^{-1}\mathbb{R}$ and we assume that this set is C^* -embedded, we have the extension to $h \in D(YG)$ and $|h| \leq g_1 + g_2$ (since that holds on the dense set $g_1^{-1}\mathbb{R} \cap g_2^{-1}\mathbb{R}$). Thus $h \in G^c$ and $h = f_1 + f_2$ in G^c .

Proposition 3.4. Suppose that G is Z-convex.

- (a) If $g \in G^+$ and there is $0 < r \in \mathbb{R}$ such that g(x) > 0 implies $g(x) \ge r$, then there is $f \in W_Z G$ such that $f \sim_a g$.
- (b) For all $g \in G$, there exists $f \in W_Z G$ such that $f^{-1}\mathbb{R} = g^{-1}\mathbb{R}$.
- (c) For all $g \in G$, $\beta g^{-1} \mathbb{R} = YG$.
- (d) G^c is a convex ℓ -group with $YG^c = YG$.

Proof. The definition of Z-convex includes the assumption that YG is zerodimensional, so any $g^{-1}\mathbb{R}$ is zero-dimensional and Lindelöf, thus strongly zerodimensional. See [9] and [20].

(a) Without loss of generality, $r \ge 3$. For every $n \ge 3$, choose a clopen set U_n with $g^{-1}[n-1, n+1] \subseteq U_n \subseteq g^{-1}(n-2, n+2)$ so that

$$n-2 \leqslant \bigwedge_{n} g|_{U_n} \leqslant \bigvee_{n} g|_{U_n} \leqslant n+2.$$

Let $V_n = U_n \setminus \bigcup_{j < n} U_j$. Then the functions $g|_{V_n}$ retain the preceding inequalities and $g^{-1}\mathbb{R} = Z(g) \bigsqcup_n V_n$. Clearly, this set is open.

Now define $f \in D_Z(YG)$ by $f|_{V_n} = n-2$, $f|_{YG-g^{-1}\mathbb{R}} = +\infty$ and $f|_{Z(g)} = 0$. So then $f \leq g$ on $g^{-1}\mathbb{R}$ and hence, $f \leq g$. Also

$$g|_{V_n} \leq n+2 = (n-2)+4 = f|_{V_n} + 4.$$

Then $g \leq f + 4 \leq 5f$, since $1 \leq f$.

(b) Apply (a) to $|g| \vee 3$ to get f.

(c) Since $g^{-1}\mathbb{R}$ is strongly zero-dimensional, it suffices to demonstrate that any $h \in C(g^{-1}\mathbb{R}, \{0, 1\})^+$ extends over YG. See [9] and [20]. By (b), we can assume that $g \in W_ZG$. Define $f \in D_Z(YG)$ by f(x) = g(x) + h(x) if $x \in g^{-1}\mathbb{R}$ and $f(x) = +\infty$, otherwise. Then $f \leq g + 2 \in G$. Since G is Z-convex, $f \in G$. Thus, $g - f \in G$ and this is the desired extension of h.

(d) By (c) and Proposition 3.3.

Theorem 3.5. Let A be a proper subgroup of \mathbb{R} containing 1.

- (a) If H is convex with YH zero-dimensional, then W_AH is A-convex and $H = (W_AH)^c$.
- (b) If G is A-convex, then G^c is a convex ℓ -group with YG^c zero-dimensional and $W_A(G^c) \leq G$.

Proof. (a) If YH is zero-dimensional, then C(YH, Z) separates points of YH. Since $C(YH, Z) \leq W_Z H \leq W_A H$, the group $W_Z H$ also separates points of YH and thus $YW_A H = YH$. Now suppose that H is convex and $f \in D_A(YW_A H)$, such that $|f| \leq g \in W_A H$ for some g. Then $f \in D(YH)$ and $|f| \leq g \in H$. Since H is convex, $f \in H$. Since also $f \in D_A(YH)$, we have that $f \in W_A H$ and, hence, $W_A H$ is convex.

We know that $W_A H \subseteq H$ and so $(W_A H)^c \subseteq H$ since H is convex. For the reverse, $H^+ \subseteq (W_Z H)^c$ by Proposition 3.4 (a); so $H \subseteq (W_Z H)^c$ since the larger set is an ℓ -group by the above and by Proposition 3.4 (d). Since we have the containment $(W_Z H)^c \subseteq (W_A H)^c$, the proof is complete.

(b) Assume that G is A-convex. Since $Z \leq A$, G is Z-convex, so Proposition 3.4 (d) applies. Let $f \in W_A G^c$, that is, $f \in D_A(YG^c)$ and $|f| \leq g \in G^c$. Thus, $|f| \leq g \leq g' \in G$. Since G is A-convex, $f \in G$.

Corollary 3.6. Let A be a proper subgroup of \mathbb{R} containing 1.

- (a) The following are equivalent:
 - (a₁) H is convex with YH zero-dimensional.
 - (a₂) $H = G^c$ for some A-convex G.
 - (a₃) $H = G^c$ for a unique A-convex G with $G = W_A G$, namely $G = W_A H$.
- (b) The following are equivalent:
 - (b₁) G is A-convex.
 - (b₂) $W_A H \leq G \leq H$ for some convex H with YH zero-dimensional; such an H is unique, namely $H = G^c$.

Proof. $(a_3) \Rightarrow (a_2)$ is clear and $(a_2) \Rightarrow (a_1)$ by Theorem 3.5(b).

415

 $(a_1) \Rightarrow (a_3)$: We know that $H = (W_A H)^c$ by Theorem 3.5 (a). If also $H = G^c$ for some A-convex $G = W_A G$, then

$$W_A H = W_A(G^c) \leqslant G \leqslant W_A G \leqslant W_A(G^c),$$

using Theorem 3.5 (b) and the fact that $G \leq G^c$ implies that $W_A G \leq W_A G^c$.

 $(b_1) \Rightarrow (b_2)$: Assume that G is A-convex. By Theorem 3.5 (a), if H satisfies (b_2) then $H = G^c$ and by Theorem 3.5 (b) G^c does satisfy (b_2) .

 $(\mathbf{b}_2) \Rightarrow (\mathbf{b}_1)$: Suppose that G and H satisfy (\mathbf{b}_2) . Then YG = YH and if $f \in D_A(YG)$ with $|f| \leq g \in G$ then $f \in W_AH$ so $f \in G$. Thus, G is A-convex.

Remark 3.7. (a) Proposition 3.3 is the content of Remark 2.6 (e) in [2], where no proof was given.

(b) Proposition 3.4 is related to a lemma in [2].

(c) A W-object (G, u) for which every $g \in G^+$ satisfies the hypothesis of Proposition 3.4 (a) is called *bounded away*. So we have shown that when G is Z-convex and bounded away, $W_Z G \leq_a G$. This is closely related to Corollary 4.5 of [14].

In Proposition 3.4 (a), the bounded away condition can not be dropped: Let X be a compact and zero-dimensional space, then C(X) is Z-convex. However, $W_Z C(X) = C(X, Z)$ and $C(X, Z) \leq_a C(X)$ if and only if X is finite. (See [13].)

(d) In fact, for H convex, $W_Z H \leq_a H$ if and only if YH is finite (whence $H \cong \mathbb{R}^n$ for some $n \in \mathbb{N}$): sufficiency is easy to show, so let's show necessity. If H is convex, then $H^* = C(YH)$ and if $W_Z H \leq_a H$, then

$$C(YH, Z) = W_Z H^* = (W_Z H)^* \leq_a H^* = C(YH)$$

and we have the situation of the above. So YH is finite.

(e) Proposition 3.4 shows that Z-convex answers Question 2.4.1 (a), while Corollary 3.6 and Remark (d) above show that Z-convex fails to answer Question 2.4.1 (b), equivalently, the condition $W_Z H = G$ fails to answer Question 2.4.2.

4. The main theorem

We now replace Z by \mathbb{Q} .

Theorem 4.1. In W:

- (a) If H is convex with YH zero-dimensional, then $W_{\mathbb{Q}}H \leq_a H$ and H is the unique a-closure of $W_{\mathbb{Q}}H$.
- (b) If G is Q-convex, then $G \leq_a G^c$, so G^c is the unique a-closure of G.
- (c) If H is \mathbb{Q} -convex, then $W_{\mathbb{Q}}H \leq_a H$.

Proof. By \$3, (a) and (b) two are the same statement, so we prove (a). Statement (c) is a direct consequence of (a) and (b).

Let H be convex with YH zero-dimensional and $h \in H^+$. Choose a clopen set $U \subseteq YH$ with $h^{-1}[0, \frac{1}{2}] \subseteq U \subseteq h^{-1}[0, 1)$. Let $h_1(p) = h(p)$ if $p \in U$, $h_1(p) = 0$ otherwise and let $h_2(p) = h(p)$ if $p \notin U$ and $h_2(p) = 0$ if $p \in U$. Since U is clopen, $h_1, h_2 \in D(YH)$ and since $0 \leq h_1, h_2 \leq h$, and H is convex, $h_1, h_2 \in H$. It suffices to find $g_1, g_2 \in W_{\mathbb{Q}}H^+$ with $g_i \sim_a h_i$ when i = 1, 2 and then $g_1 + g_2 \sim_a h_1 + h_2 = h$. Now $h_2(p) > 0$ implies that $h_2(p) \geq \frac{1}{2}$. So by Proposition 3.4 (a), there is $g_2 \in H_1$.

 $W_Z H$ with $g_2 \sim_a h_2$.

For i = 1: since H is convex, $H^* = C(YH)$. We finish by using the following Lemma (with $f = h_1$).

Lemma 4.2. If X is compact and zero-dimensional and $f \in C(X)$ such that $0 \leq f \leq 1$, then there is $g \in C(X, \mathbb{Q})$ with $g \sim_a f$.

Proof. By induction, choose clopen sets $K_0 \supseteq K_2 \supseteq \ldots$ as follows: $K_0 = X$ and for each n,

$$f^{-1}[0, 1/2^{n+1}] \subseteq K_{n+1} \subseteq K_n \cap f^{-1}[0, 1/2^n).$$

Then we see that $Z(f) = \bigcap_n K_n$,

$$1/2^{n+1} \leq f|_{K_n \setminus K_{n+1}} \leq 1/2^{n-1}$$

and $\operatorname{coz}(f) = \bigcup_{n} (K_n \setminus K_{n+1})$. Define $g \in C(X, \mathbb{Q})$ by g(x) = 0 when $x \in Z(f)$ and $g(x) = 1/2^{n+1}$ when $x \in K_n \setminus K_{n+1}$. Then $g \leq f$ and $f \leq 4g$. Thus, $g \sim_a f$. \Box

5. Alexandroff algebras and $C(X, \mathbb{Q})$

Throughout, we assume that X is zero-dimensional; otherwise, $C(X, \mathbb{Q})$ may be too small.

Theorem 5.1. Suppose X is zero-dimensional.

- (a) Each $g \in C(X, \mathbb{Q})$ has an extension $\hat{g} \in D(\beta_0 X)$, and $\{\hat{g} \colon g \in C(X, \mathbb{Q})\}$ is the Yosida representation. In particular, $YC(X, \mathbb{Q}) = \beta_0 X$.
- (b) $C(X, \mathbb{Q})$ is \mathbb{Q} -convex and so has a unique *a*-closure $C(X, \mathbb{Q})^c$.
- (c) $W_{\mathbb{Q}}C(X) = W_{\mathbb{Q}}C(X,\mathbb{Q})$ and $W_{\mathbb{Q}}C(X) \leq_a C(X,\mathbb{Q})$.
- (d) $W_{\mathbb{Q}}C(X) = C(X, \mathbb{Q})$ if and only if X is pseudocompact.

Proof. (a) Consider the commutative diagram of continuous functions:

in which $\beta_0 g$ exists with $\beta_0 g|_X = g$, because β_0 is the reflection functor to compact zero-dimensional spaces. Since \mathbb{Q} is strongly zero-dimensional, we have that $\beta_0 \mathbb{Q} = \beta \mathbb{Q}$. Then f is the extension of the inclusion $\mathbb{Q} \hookrightarrow \mathbb{R} \subseteq \mathbb{R} \cup \{\pm \infty\}$, and $\hat{g} = f \circ \beta_0 g \in D(\beta_0 X)$.

We have $C(X, \mathbb{Q}) \supseteq C^*(X, Z) \cong C(\beta_0 X, Z)$, and the last separates the points of $\beta_0 X$, thus so does $\{\hat{g}: g \in C(X, \mathbb{Q})\}$ hence this is the Yosida representation.

(b) Let $f \in D_{\mathbb{Q}}(\beta_0 X)$ and $|f| \leq \hat{g}$, where $g \in C(X, \mathbb{Q})$. Then $f|_X \in C(X, \mathbb{Q})$ and $\widehat{f|_X} = f$. Thus, $C(X, \mathbb{Q})$ is \mathbb{Q} -convex. Then $C(X, \mathbb{Q})^c$ is the unique *a*-closure by Theorem 4.1.

(c) Since $C(X, \mathbb{Q}) \leq C(X)$ we have $W_{\mathbb{Q}}C(X, \mathbb{Q}) \leq W_{\mathbb{Q}}C(X)$. For the reverse, let $f \in W_{\mathbb{Q}}C(X)$. This means that $f = \beta g$ for $f|_X = g \in C(X)$ and for $p \in \beta X$, whenever $f(p) \in \mathbb{R}$ necessarily means that $f(p) \in \mathbb{Q}$. Thus $g \in C(X, \mathbb{Q})$. We have $f = \beta g = \hat{g} \circ \varphi$, where $\varphi \colon \beta X \to \beta_0 X$ is the canonical map. Then whenever $\hat{g}(q) \in \mathbb{R}$, we necessarily have that $\hat{g}(q) \in \mathbb{Q}$ for all $q \in \beta_0 X$.

That $W_{\mathbb{Q}}C(X) \leq_a C(X, \mathbb{Q})$ follows from (b) and Theorem 4.1.

(d) By (c), having $W_{\mathbb{Q}}C(X) = C(X,\mathbb{Q})$ is equivalent to having the inclusion $W_{\mathbb{Q}}C(X) \supseteq C(X,\mathbb{Q})$, which means that for $f \in D(\beta_0 X)$, $f(X) \subseteq \mathbb{Q}$ implies $f|_{f^{-1}\mathbb{R}} \subseteq \mathbb{Q}$.

Suppose that X is pseudocompact, $f \in D(\beta_0 X)$ and $f(X) \subseteq \mathbb{Q}$. Then f(X) is a pseudocompact subset of \mathbb{Q} , hence compact, so $f^{-1}\mathbb{R} = \beta_0 X$ and $f(\beta_0 X) = f(X) \subseteq \mathbb{Q}$.

Suppose that X is not pseudocompact. Then, since X is zero-dimensional, $X = \bigcup_n U_n$ for nonempty pairwise disjoint clopen sets U_n . Let $x_n \to r$ in \mathbb{R} with $x_n \in \mathbb{Q}$

and $r \notin \mathbb{Q}$, and define $g \in C(X, \mathbb{Q})$ by $g|_{U_n} = x_n$. Then the extension $\hat{g} \in D(\beta_0 X)$ must have $\hat{g}(p) = r$ for some p therefore $g \notin W_{\mathbb{Q}} C(X)$.

Corollary 5.2. $C(X, \mathbb{Q})^c = C(X)$ (equivalently, $C(X, \mathbb{Q}) \leq_a C(X)$) if and only if X is strongly zero-dimensional.

We now describe $C(X, \mathbb{Q})^c$, in general.

If X is zero-dimensional, let clop(X) be the Boolean algebra of clopen sets of X. Then for $U \in clop(X)$, the map $U \mapsto cl U \in clop(\beta_0 X)$ is its Stone representation.

Define $(\operatorname{clop}(X))_{\sigma} = \{\bigcup_{n} U_n \colon U_n \in \operatorname{clop}(X)\}$. Clearly, $(\operatorname{clop}(X))_{\sigma} \subseteq \operatorname{coz}(X)$, with equality if and only if X is strongly zero-dimensional. In fact,

$$(\operatorname{clop}(X))_{\sigma} = \{ K \cap X \colon K \in \operatorname{coz}(\beta_0 X) \}$$

Define $A(X) = \{f \in \mathbb{R}^X : f^{-1}K \in (\operatorname{clop}(X))_{\sigma} \text{ for } K \subseteq \mathbb{R} \text{ open}\}$. Then A(X) is a **W**-object and $A(X) \leq C(X)$ with equality if and only if X is strongly zerodimensional. See § 7 of [10] for a discussion.

Theorem 5.3.

- (a) A(X) is of the type in Theorem 2.5. (2), thus is convex.
- (b) $C(X,\mathbb{Q}) \leq A(X)$ and for each $f \in A(X)$ there is a sequence of functions $\{g_n\}_{n=1}^{\infty} \in C(X,\mathbb{Q})$ such that $g_n \to f$ uniformly on X.
- (c) Each $f \in A(X)$ has an extension $\hat{f} \in D(\beta_0 X)$ and $\{\hat{f} \colon f \in A(X)\}$ is the Yosida representation. In particular, $YA(X) = \beta_0 X$.
- (d) $W_{\mathbb{Q}}A(X) = W_{\mathbb{Q}}C(X) \leq C(X,\mathbb{Q}) \leq A(X).$
- (e) $A(X) = C(X, \mathbb{Q})^c$, that is, A(X) is the unique a-closure of $C(X, \mathbb{Q})$.

Proof. (a) This is easily verified, or one may see §7 of [10].

(b) Let $g \in C(X, \mathbb{Q})$ and let A be an open set in \mathbb{R} . Since \mathbb{Q} is strongly zerodimensional, $A \cap \mathbb{Q} = \bigcup_n U_n$ for clopen sets $U_n \in \mathbb{Q}$. Thus, we can write $g^{-1}A = \bigcup_n g^{-1}U_n \in (\operatorname{clop}(X))_{\sigma}$.

Let $f \in A(X)$ and $\varepsilon > 0$. Let \mathscr{A} be a countable cover of \mathbb{R} by open intervals of length less than ε . So, for $A \in \mathscr{A}$, $f^{-1}A = \bigcup_{n} U(n, A)$ for clopen U(n, A) and $\mathscr{U} = \{U(n, A): A \in \mathscr{A}, n \in \mathbb{N}, U(n, A) \neq \emptyset\}$ is a countable cover of X by clopen sets. We re-index the sets as $\mathscr{U} = \{U_n\}$ and disjointify: $V_n = U_n \setminus \bigcup_{i < n} U_i$. Let $\mathscr{V} = \{V_n\}_n$.

For each $A \in \mathscr{A}$, choose $r_A \in A \cap \mathbb{Q}$. Let $g = \sum_n \{r_A \chi_{V_n} : V_n \in \mathscr{V}\}$, where χ_{V_n} is the characteristic function of V_n . Then $g \in C(X, \mathbb{Q})$ and $|g(x) - f(x)| < \varepsilon$ for each $x \in X$.

(c) The extensions \hat{f} exist by Theorem 5.1 (a) and the fact that a uniform limit of extendible functions is extendible. These extensions separate the points, since the extensions \hat{g} for $g \in C(X, \mathbb{Q})$ do. The rest follows from this.

(d) This follows from Theorem 5.1 (c) and from $C(X, \mathbb{Q}) \leq A(X) \leq C(X)$.

(e) By (a), (d) and 4.

Remark 5.4. (a) Theorem 5.3 (a), (b), and (c) are implicit in §7 of [11].

(b) From a more general perspective, $(\operatorname{clop}(X))_{\sigma}$ is an example of what is called a *cozero field*, A(X) is its associated *Alexandroff algebra*, and Theorem 2.5 (2) is a characterization of such things. One may see [10], [11], [12] and the original references therein to Hausdorff, Lebesgue and A. D. Alexandroff.

References

- [1] M. Anderson and T. Feil: Lattice-Ordered Groups. Reidel, Dordrecht, 1989.
- [2] E. Aron and A. Hager: Convex vector lattices and l-algebras. Topology Appl. 12 (1981), 1–10.
- [3] A. Bigard, K. Keimel and S. Wolfenstein: Groupes et anneaux reticules. Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [4] P. Conrad: Archimedean extensions of lattice-ordered groups. J. Indian Math. Soc. 30 (1966), 131–160.
- [5] P. Conrad: Epi-archimedean groups. Czechoslovak. Math. J. 24(99) (1974), 192–218.
- [6] P. F. Conrad, M. R. Darnel and D. G. Nelson: Valuations of lattice-ordered groups. J. Algebra 192 (1997), 380–411.
- [7] M. Darnel: Theory of Lattice-Ordered Groups. Pure and Applied Mathematics, Vol. 187. Dekker, New York, 1995.
- [8] R. Engelking: General Topology. Heldermann, Berlin, 1989.
- [9] L. Gillman and M. Jerison: Rings of Continuous Functions. D. Van Nostrand Publ., 1960.
- [10] A. Hager: Cozero fields. Confer. Sem. Mat. Univ. Bari. 175 (1980), 1–23.
- [11] A. Hager: On inverse-closed subalgebras of C(X). Proc. London Math. Soc. 3 (1969), 233–257.
- [12] A. Hager: Real-valued functions on Alexandroff (zero-set) spaces. Comm. Math. Univ. Carolin. 16 (1975), 755–769.
- [13] A. Hager and C. Kimber: Some examples of hyperarchimedean lattice-ordered groups. Fund. Math. 182 (2004), 107–122.
- [14] A. Hager, C. Kimber and W. McGovern: Least integer closed groups. Ordered Alg. Structure (2002), 245–260.
- [15] A. W. Hager and J. Martinez: Singular archimedean lattice-ordered groups. Algebra Univ. 40 (1998), 119–147.
- [16] A. Hager and L. Robertson: Representing and ringifying a Riesz space. Sympos. Math. 21 (1977), 411–431.
- [17] M. Henriksen and D. Johnson: On the structure of a class of archimedean lattice-ordered algebras. Fund. Math. 50 (1961), 73–94.
- [18] M. Henriksen, J. Isbell and D. Johnson: Residue class fields of lattice-ordered algebras. Fund. Math. 50 (1961), 107–117.
- [19] C. Kimber and W. McGovern: Bounded away lattice-ordered groups. Manuscript, 1998.

420

- [20] J. R. Porter and R. G. Woods: Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag, 1988.
- [21] K. Yosida: On the representation of the vector lattice. Proc. Imp. Acad. Tokyo 18 (1942), 339–343.

Authors' addresses: Anthony W. Hager, Department of Mathematics, Wesleyan University, Middletown, CT 06459-0128, USA, e-mail: ahager@wesleyan.edu; Chawne M. Kimber, Department of Mathematics, Lafayette College, Easton, PA 18042, USA, e-mail: kimberc@lafayette.edu; Warren Wm. McGovern, Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA, e-mail: warrenb@bgnet.bgsu.edu.