On the lattice of z-ideals of a commutative ring

Oghenetega Ighedo, Warren Wm. McGovern

PII: S0166-8641(19)30374-8
DOI: https://doi.org/10.1016/j.topol.2019.106969
Reference: TOPOL 106969

To appear in: Topology and its Applications

Received date: 30 October 2018
Revised date: 28 February 2019
Accepted date: 7 March 2019

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier.
ON THE LATTICE OF z-IDEALS OF A COMMUTATIVE RING

OGHENETEGA IGHEDO AND WARREN WM. MCGOVERN

This article is dedicated to Professor Aleˇs Pultr on his 80th birthday.

Abstract. We prove that the lattice of z-ideals of a commutative ring with identity is a coherent frame. We characterize when it is a Yosida frame, and when it satisfies some projectability properties. We also characterize Hilbert rings in terms of ideals that arise naturally in this study. A ring with zero Jacobson radical is shown to be feebly Baer precisely when its frame of z-ideals is feebly projectable. Denote by $\text{ZId}(A)$ the frame of z-ideals of a ring A. We show that the assignment $A \mapsto \text{ZId}(A)$ is the object part of a functor $\text{CRng} \to \text{CohFrm}$, where CRng designates the category whose objects are commutative rings with identity and whose morphisms are the ring homomorphisms that contract z-ideals to z-ideals.

1. Introduction

Throughout the paper, by “ring” we mean a commutative ring with identity $1 \neq 0$. Almost all our rings are reduced, which is to say they have no nonzero nilpotent elements. The history of z-ideals in rings is easy to record. The first usage of the term “z-ideal” was by Kohls [13] in the study of rings of continuous functions. He observed that they could be characterized purely algebraically. Modifying that characterization, it was Mason [16] who initiated the study of z-ideals of commutative rings in earnest.

The interest in lattices of z-ideals started with the paper of Martínez and Zenk [15], in which they prove that the lattice of z-ideals of the ring $C(X)$ is a frame. They actually proved that it is a coherently normal Yosida frame. In her doctoral thesis [9], the first-named author of the present article extended this result of Martínez and Zenk to lattices of z-ideals of the ring RL of continuous real-valued functions on a completely regular frame. This was further extended by Dube [5] to lattices of z-ideals of an f-ring with bounded inversion.

The present paper (which started as a question raised at the Ordered Algebraic Structures meeting held at Louisiana State University in 2016) significantly improves the earlier results. It is organized as follows.

We recall in Section 2 the necessary background, and we fix notation. In Section 3, we prove that the lattice, $\text{ZId}(A)$, of z-ideals of any ring A is a frame (Theorem 3.1). We obtain this via a device called a “prenucleus” that was invented by Banaschewski [1]. The prenucleus in question is defined on the frame, $\text{RId}(A)$, of radical ideals of A, and it turns out that the fixed elements of the prenucleus are precisely the z-ideals of A. After identifying the compact elements of $\text{ZId}(A)$ (Lemma 3.2), we show that $\text{ZId}(A)$ is a coherent frame (Theorem 3.4).

In [14], Martínez and Zenk introduce what they call a “z-nucleus” on an algebraic frame L. Its fixed elements are called the z-elements of L. Their proof that the lattice of z-ideals of $C(X)$, for X compact, is a frame actually shows that these ideals are the z-elements of the frame of convex ℓ-ideals of $C(X)$, when the latter is viewed as an ℓ-group. In Section 4
we identify the \(z \)-elements of \(\text{RId}(A) \) (Theorem 4.4), and this enables us to characterize the rings \(A \) for which \(\text{ZId}(A) \) is a Yosida frame (Corollary 4.5).

The penultimate section deals with issues surrounding the notion of projectability – a property that is frequently considered in algebraic frames. We prove, among other things, that a ring with zero Jacobson radical is weak Baer if and only if its frame of \(z \)-ideals is projectable (Proposition 5.4), and that it is feebly Baer if and only if \(\text{RId}(A) \) is feebly Baer.

In the final section, we show that \(\text{ZId} \) can be made into a functor when we restrict the ring homomorphisms to those that contract \(z \)-ideals to \(z \)-ideals (Proposition 6.3). We give a comment (Remark 6.2) why this restriction is actually “forced” on us.

2. Background and Notation

2.1. Algebraic frames. Our reference for frames and their homomorphisms is [19]. Our notation is, to a large extent, standard. For instance, we denote the pseudocomplement of an element \(a \) by \(a^* \), and the right adjoint of a frame homomorphism \(h \) by \(h^* \).

Let \(L \) be a frame. An element \(a \in L \) is compact if, for any \(X \subseteq L \), \(a \leq \bigvee X \) implies that there is a finite \(Y \subseteq X \) with \(a \leq \bigvee Y \). We denote by \(\mathfrak{t}(L) \) the set of all compact elements of \(L \). If every element of \(L \) is the join of compact elements below it, then \(L \) is said to be algebraic. If \(a \wedge b \in \mathfrak{t}(L) \) for every \(a, b \in \mathfrak{t}(L) \), then \(L \) is said to have the finite intersection property, throughout abbreviated as FIP. If the top element of \(L \) (which we shall denote by 1) is compact and \(L \) has FIP, then \(L \) is called coherent. A frame homomorphism between algebraic frames is called a coherent map if it maps compact elements to compact elements.

2.2. Rings. We write \(\text{Ann}(S) \) for the annihilator of \(S \subseteq A \), and abbreviate \(\text{Ann}(\{a\}) \) as \(\text{Ann}(a) \). The ideal generated by a single element \(a \) will be written as \(\langle a \rangle \). The radical of an ideal \(I \) of \(A \) is the ideal

\[\sqrt{I} = \{ x \in A \mid x^n \in I \text{ for some positive integer } n \}. \]

An ideal is called a radical ideal if it coincides with its radical. A convenient characterization is that

\[I \text{ is a radical ideal } \iff a^2 \in I \text{ implies } a \in I. \]

The smallest radical ideal containing an element \(a \) is denoted by \([a]\). That is, \([a] = \sqrt{\langle a \rangle}\).

The lattice \(\text{RId}(A) \) of radical ideals of \(A \), ordered by inclusion, is a coherent frame (see [2]). The meet in \(\text{RId}(A) \) is intersection, and the join is the radical of the sum. The principal radical ideal generated by \(a \in A \) is denoted by \([a]\). The compact elements of \(\text{RId}(A) \) are the finitely generated radical ideals. The top element of \(\text{RId}(A) \) is the compact element \([1] = A \), and the bottom element is \([0]\), which is the zero ideal if \(A \) is reduced. We let \(\text{Max}(A) \) denote the set of maximal ideals of \(A \).

For an element \(a \) of a ring \(A \), we write \(\mathfrak{z}(a) \) and \(\mathfrak{Z}(a) \), respectively, for the sets

\[\mathfrak{z}(a) = \{ M \in \text{Max}(A) \mid a \in M \} \quad \text{and} \quad \mathfrak{Z}(a) = \bigcap \mathfrak{z}(a). \]

An ideal \(I \) of \(A \) is a \(z \)-ideal if, for any \(a, b \in A \)

\[\mathfrak{z}(a) = \mathfrak{z}(b) \quad \text{and} \quad a \in I \implies b \in I. \]

Examples of \(z \)-ideals are maximal ideals and the minimal prime ideals of Jacobson semi-simple rings. Intersections of \(z \)-ideals are \(z \)-ideals. A useful characterization (which is known in the literature) is that \(I \) is a \(z \)-ideal if and only if \(\mathfrak{Z}(a) \subseteq I \) for every \(a \in I \). Observe, as well, that \(\mathfrak{Z}(a) \) is the smallest \(z \)-ideal containing \(a \).

A ring \(A \) is Gelfand if for any \(a, b \in A \) with \(a + b = 1 \), there exist \(r, s \in A \) such that

\[(1 + ar)(1 + bs) = 0. \]
3. Frames of z-ideals

It has been established in a number of papers that the lattices of z-ideals of certain rings are algebraic frames. This was first done for the rings $C(X)$ [15], then for the rings \mathcal{RL} [9], and the most recent case for f-rings with bounded inversion [5]. In the latter two cases, the result is obtained by showing that the lattice in question is a certain quotient of the frame of radical ideals and radical f-ideals, respectively.

For the general case we utilize the notion of a “prenucleus”; a clever device invented by Banaschewski [1]. Let us recall that a prenucleus on a frame L is a map $k_0: L \to L$ such that, for all $x, y \in L$:

$$x \leq k_0(x), \quad x \leq y \implies k_0(x) \leq k_0(y), \quad k_0(x) \wedge y \leq k_0(x \wedge y).$$

The set $\text{Fix}(k_0) = \{t \in L \mid k_0(t) = t\}$ is then a frame, and the mapping $k: L \to L$ given by

$$k(x) = \bigwedge \{t \in L \mid x \leq t = k_0(t)\}$$

is a nucleus on L with $\text{Fix}(k) = \text{Fix}(k_0)$. We denote by $\text{ZId}(A)$ the lattice of z-ideals of a ring A. Observe that for any $a \in A$, $Z(a) \in \text{RId}(A)$.

Theorem 3.1. *For any commutative ring* A, *the lattice* $\text{ZId}(A)$ *is a frame.*

Proof. Define a map $k_0: \text{RId}(A) \to \text{RId}(A)$ by

$$k_0(I) = \bigvee \{Z(a) \mid a \in I\}.$$

We claim that k_0 is a prenucleus on $\text{RId}(A)$. It is clear that, for any $I, J \in \text{RId}(A)$, $I \subseteq k_0(I)$, and $I \subseteq J$ implies $k_0(I) \subseteq k_0(J)$. Note that if $a \in I$ and $u \in J$, then $[u] \cap Z(a) \subseteq Z(au)$. To see this, let $x \in [u] \cap Z(a)$. Pick a positive integer n and $r \in A$ such that $x^n = ru$. Consider any maximal ideal N of A with $au \in N$. We aim to show that $x \in N$. Since N is a prime ideal (as it is maximal in a ring with identity), $a \in N$ or $u \in N$. In the former case, we have that $x \in N$ because $x \in Z(a)$, which is the intersection of all maximal ideals containing a. In the latter case, $x^n \in N$, and hence $x \in N$, by primeness. We have thus shown that x belongs to every maximal ideal containing au, so $x \in Z(au)$, establishing the stated containment. Now,

$$J \cap k_0(I) = J \cap \bigvee \{Z(a) \mid a \in I\} = \bigvee \{J \cap Z(a) \mid a \in I\},$$

and since $J = \bigvee \{[u] \mid u \in J\}$, we have, for any $a \in I$,

$$Z(a) \cap J = Z(a) \cap \bigvee \{[u] \mid u \in J\}$$

$$= \bigvee \{Z(a) \cap [u] \mid u \in J\}$$

$$\subseteq \bigvee \{Z(au) \mid u \in J\}$$

$$\subseteq \bigvee \{Z(t) \mid t \in I \cap J\}$$

$$= k_0(I \cap J),$$

which leads to $J \cap k_0(I) \subseteq k_0(I \cap J)$, thus showing that k_0 is a prenucleus. Consequently, $\text{Fix}(k_0)$ is a frame. Next, we show that $\text{Fix}(k_0) = \text{ZId}(A)$. Let I be a z-ideal in A. Then $Z(a) \subseteq I$ for each $a \in I$, which then shows that I is an upper bound for the set $\{Z(a) \mid a \in I\}$. Let J be the supremum of this set. For any $a \in I$, $Z(a) \subseteq J$, and so $a \in J$, showing that $I \subseteq J$. Therefore $I = \bigvee \{Z(a) \mid a \in I\} = k_0(I)$. Thus, $\text{ZId}(A) \subseteq \text{Fix}(k_0)$. For the other inclusion, if $I = k_0(I)$, then $Z(a) \subseteq I$ for every $a \in I$, which says I is a z-ideal. So $\text{Fix}(k_0) \subseteq \text{ZId}(A)$, and hence equality follows. \qed
We point out that the join in $\text{ZId}(A)$ is the smallest z-ideal containing the sum.

With an aim to show that $\text{ZId}(A)$ is a coherent frame, we now describe the compact elements of this frame.

Lemma 3.2. For any commutative ring A, the compact elements of $\text{ZId}(A)$ are precisely the ideals of the form $\text{Z}(a_1) \lor \cdots \lor \text{Z}(a_n)$, for some finitely many elements $a_i \in A$. That is,

$$\mathcal{t}(\text{ZId}(A)) = \{ \text{Z}(a_1) \lor \cdots \lor \text{Z}(a_k) \mid a_1, \ldots, a_k \in A \}.$$

Proof. To show that each $\text{Z}(a_1) \lor \cdots \lor \text{Z}(a_k)$ is compact, we first show that each $\text{Z}(a)$ is compact. Consider a directed collection $\{I_a \mid a \in \Gamma\} \subseteq \text{ZId}(A)$ with $\text{Z}(a) \leq \bigvee \{I_a \mid a \in \Gamma\}$. Then $\text{Z}(a) \subseteq \bigcup \{I_a \mid a \in \Gamma\}$. Since $a \in \text{Z}(a)$, we have that $a \in I_\beta$ for some $\beta \in \Gamma$, which then implies $\text{Z}(a) \subseteq I_\beta$ since I_β is a z-ideal. Therefore $\text{Z}(a)$ is compact, and hence $\text{Z}(a_1) \lor \cdots \lor \text{Z}(a_k)$ is compact. On the other hand, let $K \in \mathcal{t}(\text{ZId}(A))$. Since $K = \bigvee \{\text{Z}(a) \mid a \in K\}$, and since K is compact, we can find finitely many $a_1, \ldots, a_n \in A$ such that $K = \text{Z}(a_1) \lor \cdots \lor \text{Z}(a_n)$. This proves the lemma. \hfill \square

The goal is to show that $\text{ZId}(A)$ is a coherent frame. We thus need to be able to describe the meet of two compact elements. For that we need the following lemma.

Lemma 3.3. For any $a, b \in A$, $\text{Z}(a) \land \text{Z}(b) = \text{Z}(ab)$.

Proof. Since $\mathfrak{z}(a) \subseteq \mathfrak{z}(ab)$, it follows that $\text{Z}(ab) \subseteq \text{Z}(a)$, and similarly, $\text{Z}(ab) \subseteq \text{Z}(b)$. Therefore, $\text{Z}(ab) \subseteq \text{Z}(a) \land \text{Z}(b)$. For the other inclusion, observe that since maximal ideals are prime,

$$\mathfrak{z}(ab) = \mathfrak{z}(a) \lor \mathfrak{z}(b),$$

which then shows that $\text{Z}(a) \land \text{Z}(b) \subseteq \text{Z}(ab)$. \hfill \square

Now, let us recall from [1] that if $k : L \to L$ is a nucleus such that Fix(k) is closed under directed joins calculated in L, then Fix(k) is compact if L is compact. To apply this to $\text{ZId}(A)$, let $k : \text{RId}(A) \to \text{RId}(A)$ be the nucleus induced by the prenucleus k_0 defined in Theorem 3.1. For later use, we remark that $k(I)$ is the smallest z-ideal containing I because

$$k(I) = \bigwedge \{J \in \text{ZId}(A) \mid I \leq J = k_0(J)\} = \bigcap \{J \in \text{ZId}(A) \mid J \supseteq I\}.$$

Theorem 3.4. $\text{ZId}(A)$ is a coherent frame.

Proof. We show first that $\text{ZId}(A)$ is compact. Since $\text{RId}(A)$ is compact, we may apply the criterion cited above from [1]. So let $\{I_a \mid a \in \Gamma\}$ be a directed collection of z-ideals. The join of this collection considered in $\text{RId}(A)$ is just the union $\bigcup_a I_a$. But clearly any directed union of z-ideals is a z-ideal. Thus, Fix(k) is closed under directed joins taken in $\text{RId}(A)$, which then proves that $\text{ZId}(A)$ is compact.

To see coherence, let $K_1, K_2 \in \mathcal{t}(\text{ZId}(A))$ with, say,

$$K_1 = \text{Z}(a_1) \lor \cdots \lor \text{Z}(a_k) \quad \text{and} \quad K_2 = \text{Z}(b_1) \lor \cdots \lor \text{Z}(b_n).$$

Then

$$K_1 \land K_2 = \left(\text{Z}(a_1) \land \text{Z}(b_1)\right) \lor \cdots \lor \left(\text{Z}(a_k) \land \text{Z}(b_n)\right) \lor \cdots \lor \left(\text{Z}(a_k) \land \text{Z}(b_n)\right) = \text{Z}(a_1b_1) \lor \cdots \lor \text{Z}(a_kb_n),$$
which, in view of the previous lemma, implies \(K_1 \wedge K_2 \) is compact. Therefore, \(Z\text{Id}(A) \) is a coherent frame.

Since \(Z\text{Id}(A) \) is the fix-set of some nucleus on \(R\text{Id}(A) \), we have that \(Z\text{Id}(A) \) is a quotient of \(R\text{Id}(A) \). We can actually say more. Recall that a frame homomorphism \(h: L \rightarrow M \) is dense if, for any \(x \in L \), \(h(x) = 0 \) implies \(x = 0 \). This is equivalent to saying \(h_+(0) = 0 \), where \(h_+ \) denotes the right adjoint of \(h \). On the other hand, \(h \) is codense if, for any \(x \in L \), \(h(x) = 1 \) implies \(x = 1 \). We have remarked that the nucleus \(k: R\text{Id}(A) \rightarrow R\text{Id}(A) \) for which \(Z\text{Id}(A) = \text{Fix}(k) \) sends a radical ideal \(I \) to the intersection of the \(z \)-ideals containing \(I \). Let us denote by

\[
\kappa: R\text{Id}(A) \rightarrow Z\text{Id}(A)
\]

the frame homomorphism induced by \(k \).

Proposition 3.5. Let \(A \) be a ring and \(\kappa: R\text{Id}(A) \rightarrow Z\text{Id}(A) \) be the homomorphism above.

(a) \(\kappa \) is a coherent map.
(b) \(\kappa \) is codense.
(c) If \(A \) has zero Jacobson radical, then \(\kappa \) is dense.

Proof. (a) To prove that \(\kappa \) is a coherent map, it suffices to show that \(\kappa([a]) \in \mathfrak{I}(Z\text{Id}(A)) \), for each \(a \in A \). Since a \(z \)-ideal contains \(a \) if and only if it contains \([a]\), it is easy to see that \(\kappa([a]) = Z(a) \). Therefore, \(\kappa \) is a coherent map.

(b) Let \(I \in R\text{Id}(A) \) be such that \(\kappa(I) = 1_{Z\text{Id}(A)} \). Since maximal ideals are \(z \)-ideals, this implies \(I \) is contained in no proper ideal of \(A \), and hence \(I \) is the whole ring \(A \). This shows that \(\kappa \) is codense.

(c) If \(A \) has zero Jacobson radical, then in both \(R\text{Id}(A) \) and \(Z\text{Id}(A) \) the bottom element is the zero ideal of \(A \). Since the right adjoint of \(\kappa \) is the inclusion map \(Z\text{Id}(A) \rightarrow R\text{Id}(A) \), it follows that \(\kappa \) is dense. \(\square \)

An upshot of items (b) and (c) in this proposition is the following result. Recall that a frame \(L \) is normal if whenever \(a \lor b = 1 \), there exist \(u \) and \(v \) in \(L \) such that

\[
u \land v = 0 \quad \text{and} \quad u \lor a = 1 = v \lor b.
\]

It is routine to verify that if \(h: L \rightarrow M \) is a surjective, dense and codense frame homomorphism, then \(L \) is normal if and only if \(M \) is normal. Now, in [2, Proposition 1], Banaschewski proves that \(R\text{Id}(A) \) is normal if and only if \(A \) is a Gelfand ring. We therefore have the following corollary.

Corollary 3.6. For any ring \(A \) with zero Jacobson radical, \(Z\text{Id}(A) \) is normal iff \(A \) is a Gelfand ring.

Other “piggyback” results based on Banaschewski’s theorems in [2] concern von Neumann regular rings and clean rings. The reader will recall that \(A \) is a clean ring if for each \(a \in A \), there is an idempotent \(e \in A \) such that \(a + e \) is invertible. (In the commutative case these rings also go by the name of exchange rings. For a nice history of clean rings see [18]). In [2], Banaschewski calls a frame \(L \) weakly zero-dimensional if whenever \(a \lor b = 1 \) in \(L \), there exists a complemented \(c \in L \) such that \(c \leq a \) and \(c' \leq b \). He then proves in [2, Proposition 2] that \(A \) is a clean ring if and only if \(R\text{Id}(A) \) is weakly zero-dimensional. Another corollary to Proposition 3.5 is the following result.

Corollary 3.7. Let \(A \) be a ring with zero Jacobson radical.

(a) \(A \) is a clean ring if and only if \(Z\text{Id}(A) \) is weakly zero-dimensional.
(b) \(A \) is von Neumann regular if and only if \(Z\text{Id}(A) \) is a regular frame.
It is rather interesting that we can characterize local rings in terms of their frames of \(z \)-ideals, as we show below and more generally. Note that the bottom element of \(\text{ZId}(A) \) is of course the Jacobson radical of \(A \).

Proposition 3.8. A ring \(A \) is local iff \(\text{ZId}(A) \) is a two-element Boolean algebra.

We prove this is a more general setting.

Proposition 3.9. A ring \(A \) has exactly \(n \) maximal ideals iff \(\text{ZId}(A) \) is isomorphic to \(2^n \) as a Boolean algebra.

Proof. Clearly, if \(\text{ZId}(A) \) is isomorphic to \(2^n \), then there are exactly \(n \) many maximal elements of \(\text{ZId}(A) \) and hence \(n \) many maximal ideals of \(A \).

Conversely, suppose \(A \) has exactly \(n \) many maximal ideals. By the Chinese Remainder Theorem, for any \(M_1, M_2, \ldots, M_t \in \text{Max}(A) \),

\[
M_1 \cap \cdots \cap M_t = M_1 M_2 \cdots M_t
\]

and so by primality, each subset of \(\text{Max}(A) \) produces a unique \(z \)-ideal. Next, let \(J \) be a (proper) \(z \)-ideal and let \(M_1, M_2, \ldots, M_t \in \text{Max}(A) \) be the collection of maximal ideals containing \(J \). Clearly, \(J \subseteq M_1 \cap \cdots \cap M_t \). Also, for any element \(a \in M_1 \cap \cdots \cap M_t \), \(Z(a) \subseteq J \) and so \(a \in J \) since \(J \) is a \(z \)-ideal.

\[\square\]

We close this section by describing the prime elements of \(\text{ZId}(A) \), denoted by \(\text{Spec}(\text{ZId}(A)) \). As is well known (and not difficult to show), the prime elements of \(\text{RId}(A) \) are precisely the prime ideals of \(A \). Also, the primes of any sublocale of a frame \(L \) are exactly the primes of \(L \) that belong to the sublocale. We consequently have the following.

Proposition 3.10. The primes of \(\text{ZId}(A) \) are precisely the prime \(z \)-ideals of \(A \).

4. When \(\text{ZId}(A) \) is a Yosida Frame

Recall from [15] that a *Yosida frame* is an algebraic frame in which every compact element is a meet of maximal elements. If the frame in question has FIP, then it is Yosida if and only if for each pair of compact elements \(a < b \), there is a \(z \) (not necessarily compact) such that \(a \vee z < 1 = b \vee z \). Our goal in this section is to characterize the rings whose frames of \(z \)-ideals are Yosida frames. Towards that end, we need to identify the \(z \)-elements (we will recall the definition shortly) of \(\text{ZId}(A) \). We will see that they coincide with the \(z \)-elements of \(\text{RId}(A) \). First, some notation.

For a ring \(A \) and any \(F \subseteq A \), we set

\[
3(F) = \{ M \in \text{Max}(A) \mid F \subseteq M \}.
\]

For a finite set \(\{a_1, \ldots, a_n\} \), we abbreviate \(3(\{a_1, \ldots, a_n\}) \) as \(3(a_1, \ldots, a_n) \).

Definition 4.1. An ideal \(I \) of \(A \) is a Martínez-Zenk ideal (abbreviated \(mz \)-ideal) if for any finite \(F \subseteq A \) and \(a \in A \), \(3(F) = 3(a) \) and \(F \subseteq I \) imply \(a \in I \).

Example 4.2. We see immediately that every \(mz \)-ideal is a \(z \)-ideal, and hence a radical ideal. Also, annihilator ideals are \(mz \)-ideals, as well as minimal prime ideals in rings with zero Jacobson radicals. Given a finite set \(F = \{a_1, a_2, \ldots, a_n\} \subseteq A \), the \(mz \)-ideal generated by \(F \) is the strong \(z \)-ideal generated by them, namely \(Z(F) \). However, in general it is possible that the \(z \)-ideal generated by \(F \) is smaller than \(Z(F) \). Unfortunately, we do not have an example of a \(z \)-ideal which is not an \(mz \)-ideal.
The following reformulations of the definition, which we record as a lemma, will be useful. They parallel the analogous characterizations of z-ideals (see [16]).

Lemma 4.3. The following are equivalent for an ideal I of a ring A.

1. I is an mz-ideal.
2. For any finite $F \subseteq I$ and any $a \in A$, $3(F) \subseteq 3(a)$ implies $a \in I$.
3. For any finite $F \subseteq I$, $\cap 3(F) \subseteq I$.

Proof. (1) \Rightarrow (2): Assume that I is an mz-ideal. Let $\{a_1, \ldots, a_n\} \subseteq I$ and $a \in A$ be such that $3(a_1, \ldots, a_n) \subseteq 3(a)$. We claim that $3(aa_1, \ldots, aa_n) = 3(a)$. The containment is immediate. For the other, let $M \in 3(aa_1, \ldots, aa_n)$. If each $a_i \in M$, then $M \in 3(a_1, \ldots, a_n) \subseteq 3(a)$. If some $a_k \notin M$, then the fact that $aa_k \in M$ implies $a \in M$, by primeness, so that $M \in 3(a)$. Now, since $\{aa_1, \ldots, aa_n\} \subseteq I$ and I is an mz-ideal, by hypothesis, it follows that $a \in I$.

(2) \Rightarrow (3): Let F be a finite set with $F \subseteq I$, and let $a \in \cap 3(F)$. If $M \in 3(F)$, then $a \in M$; and so $3(F) \subseteq 3(a)$. It, therefore, follows from (2) that $a \in I$, which then proves that $\cap 3(F) \subseteq I$.

(3) \Rightarrow (1): This follows from the fact that, for any $a \in A$, $a \in \cap 3(a)$. \hfill \Box

Condition (3) in this lemma makes it particularly apparent that every maximal ideal is an mz-ideal. Regarding z-elements, we shall use the description in [14, Definition & Remarks 6.3] since we are dealing with compact algebraic frames. For a compact algebraic frame L, the nucleus $ar : L \rightarrow L$ is given by

$$ar(x) = \bigwedge \{m \in \text{Max}(L) | x \leq m\}.$$

In particular, for any finite set $\{a_1, \ldots, a_n\} \subseteq A$, if we let K and H be the compact elements

$$K = [a_1] \lor \cdots \lor [a_n] \quad \text{and} \quad H = Z(a_1) \lor \cdots \lor Z(a_n)$$

de RId(A) and $ZId(A)$, respectively, then

$$ar(K) = \bigcap Z(a_1, \ldots, a_n) = ar(H).$$

The z-nucleus on L is defined by

$$z(x) = \bigvee \{ar(c) | c \in t(L), c \leq x\},$$

and an $x \in L$ is called a z-element if $z(x) = x$.

Theorem 4.4. For any ring A,

$$z(\text{RId}(A)) = z(\text{ZId}(A)) = \{I \subseteq A | I \text{ is an } mz\text{-ideal in } A\}.$$

Proof. We prove the equality of the first and last sets displayed above, and indicate how the equality of the second and last sets follow similarly. For brevity, let us write $MId(A)$ for the lattice of mz-ideals of A. Suppose that $I \in z(\text{RId}(A))$. Then,

$$I = \bigvee_{\text{ZId}(A)} \{ar(K) | K \in t(\text{RId}(A)), K \subseteq I\}.$$

Let $F = \{a_1, \ldots, a_n\} \subseteq I$. To show that I is an mz-ideal, it suffices, by Lemma 4.3, to prove that $\cap 3(F) \subseteq I$. Put $K = [a_1] \lor \cdots \lor [a_n]$, and note that $K \subseteq I$. Now, as observed above, $ar(K) = \bigcap 3(F)$, which then implies $\cap 3(F) \subseteq I$ since $ar(K) \subseteq I$. Therefore, I is an mz-ideal. Thus, $z(\text{RId}(A)) \subseteq MId(A)$.

On the other hand, let $J \in MId(A)$. For any $a \in J$, $a \in ar([a])$, which implies

$$J \subseteq \bigvee \{ar([a]) | a \in J\} \subseteq \bigvee \{ar(K) | K \in t(\text{RId}(A)), K \subseteq J\}.$$
But now if K is a compact element in $\text{RId}(A)$ and $K \subseteq J$, then $\text{ar}(K) \subseteq J$ since J is an mz-ideal. We therefore have

$$\bigvee \{ \text{ar}(K) \mid K \in \mathfrak{t}(\text{RId}(A)), K \subseteq J \} \subseteq J,$$

and consequently

$$J = \bigvee \{ \text{ar}(K) \mid K \in \mathfrak{t}(\text{RId}(A)), K \subseteq J \},$$

which says $J \in z(\text{RId}(A))$. This proves that $\text{MId}(A) \subseteq z(\text{RId}(A))$, and hence we have the claimed equality.

The equality $z(\text{ZId}(A)) = \text{MId}(A)$ is proved similarly, by replacing $K = [a_1] \cup \cdots \cup [a_n]$ with $K = Z(a_1) \cup \cdots \cup Z(a_n)$, and $[a]$ with $Z(a)$. \hfill \Box

We consequently have the following commutative diagram, where the horizontal arrow is the homomorphism $\kappa: \text{RId}(A) \to \text{ZId}(A)$, considered earlier, and the vertical arrows are the homomorphisms induced by the respective z-nuclei.

$$\begin{array}{ccc}
\text{RId}(A) & \longrightarrow & \text{ZId}(A) \\
\downarrow & & \downarrow \\
\text{z(\text{RId}(A))} & \longrightarrow & \text{z(\text{ZId}(A))}
\end{array}$$

Now let us recall [15, Proposition 2.5(a)], which says a compact algebraic frame L is Yosida if and only if $L = zL$. Applying it to $\text{ZId}(A)$, and taking into account the foregoing theorem, we have the following result.

Corollary 4.5. The following statements are equivalent.

1. $\text{ZId}(A)$ is Yosida.
2. $\text{ZId}(A) = z(\text{RId}(A))$.
3. Every z-ideal of A is an mz-ideal.
4. Every prime z-ideal is an mz-ideal.
5. For every finite set $F \subseteq A$, $\{Z(a) \mid a \in F\} = \bigcap \mathfrak{z}(F)$.

Proof. The equivalences (1) \iff (2) \iff (3) follow from Theorem 4.4. The implication (3) \Rightarrow (4) is trivial.

(4) \Rightarrow (3): Suppose every prime z-ideal is an mz-ideal. Let I be a z-ideal. Since $\text{ZId}(A)$ is spatial, then, by Proposition 3.10,

$$I = \bigwedge \{ P \in \text{Spec}(\text{ZId}(A)) \mid I \subseteq P \} = \bigcap \{ P \in \text{Spec}(\text{ZId}(A)) \mid I \subseteq P \}.$$

Since each prime z-ideal is an mz-ideal, by hypothesis, and intersections of mz-ideals are mz-ideals, we have that I is an intersection of mz-ideals. Therefore I is an mz-ideal.

(1) \Rightarrow (5): Assume that $\text{ZId}(A)$ is Yosida. Let $F = \{a_1, \ldots, a_n\} \subseteq A$. Observe that $\mathfrak{z}(F) \subseteq \mathfrak{z}(a_i)$ for each i, so that $Z(a_i) \subseteq \bigcap \mathfrak{z}(F)$, and hence $Z(a_1) \cup \cdots \cup Z(a_n) \subseteq \bigcap \mathfrak{z}(F)$. Suppose, by way of contradiction, that $\bigcap \mathfrak{z}(F) \not\subseteq \bigvee \mathcal{Z}(a_i)$. Then take $x \in \bigcap \mathfrak{z}(F) \setminus \bigvee \mathcal{Z}(a_i)$, and put

$$J = Z(a_1) \cup \cdots \cup Z(a_n) \cup Z(x).$$

Then J is a compact element of $\text{ZId}(A)$ with $Z(a_1) \cup \cdots \cup Z(a_n) < J$. Since $\text{ZId}(A)$ is Yosida, there is an $H \in \text{ZId}(A)$ such that

$$Z(a_1) \cup \cdots \cup Z(a_n) \cup H < Z(a_1) \cup \cdots \cup Z(a_n) \cup Z(x) \cup H = A.$$
Thus, $Z(a_1) \lor \cdots \lor Z(a_n) \lor H$ is a proper ideal in A, and so there is a maximal ideal M in A with $Z(a_1) \lor \cdots \lor Z(a_n) \lor H \subseteq M$. Consequently, $F \subseteq M$, which then implies $x \in M$ since $\bigcap \mathfrak{r}(F) \subseteq M$. But now $x \in M$ implies $J \subseteq M$, and hence $M = A$ since $M \supseteq H$ as well. This contradiction proves that $\bigcap \mathfrak{r}(F) \subseteq Z(a_1) \lor \cdots \lor Z(a_n)$, and so we have the claimed equality.

(5) \Rightarrow (2): Clearly, condition (5) implies $K = \text{ar}(K)$, for each $K \in \mathfrak{t}(Z\text{Id}(A))$. Thus, for any $I \in Z\text{Id}(A)$,

$$z(I) = \bigvee \{\text{ar}(K) \mid K \in \mathfrak{t}(Z\text{Id}(A)), K \subseteq I\} = \bigvee \{K \in \mathfrak{t}(Z\text{Id}(A)), K \subseteq I\} = I,$$

which says $z(Z\text{Id}(A)) = Z\text{Id}(A)$.

\[\square \]

Remark 4.6. Examples of rings whose frames of z-ideals are Yosida frames abound. By [5, Theorem 3.5], they include all reduced f-rings with bounded inversion. Recall that a Bézout ring is a ring in which every finitely generated ideal is principal. It is easy to see that in a Bézout ring every z-ideal is an mz-ideal. Consequently, Bézout rings are also of this type.

Theorem 4.4 tells us which ideals of A are fixed by the z-nucleus on $R\text{Id}(A)$. We now describe the ideals fixed by the ar-nucleus on $R\text{Id}(A)$. In a general algebraic frame L, $\text{Fix}(\text{ar})$ is denoted by $\mathfrak{a}^\uparrow(L)$. As in [16], we say an ideal of a ring A is a strong z-ideal if it is an intersection of maximal ideals.

Proposition 4.7. For any ring A,

$$\mathfrak{a}^\uparrow(R\text{Id}(A)) = \mathfrak{a}^\uparrow(Z\text{Id}(A)) = \{I \subseteq A \mid I$ is a strong z-ideal\}.

Recall that a Hilbert ring is a ring in which every prime ideal is an intersection of maximal ideals. Every $I \in R\text{Id}(A)$ is a meet of primes; that is, is an intersection of prime ideals of A. Thus, if A is a Hilbert ring, then every $I \in R\text{Id}(A)$ is an intersection of maximal ideals. The converse holds as well, as one sees immediately. Now, based on the fact that $\mathfrak{a}^\uparrow(Z\text{Id}(A)) \subseteq z(Z\text{Id}(A)) \subseteq Z\text{Id}(A) \subseteq R\text{Id}(A)$.

We therefore, have the following corollary, which we state in ring-theoretic terms.

Corollary 4.8. The following are equivalent for a ring A.

1. A is a Hilbert ring.
2. Every radical ideal of A is a strong z-ideal.
3. Every z-ideal of A is a strong z-ideal.
4. Every mz-ideal of A is a strong z-ideal.

We end this section with an example (within Hilbert rings, no less) that shows that the “operator” $3(\cdot)$ does not treat singletons with regard to intersections as it does with regard to unions. More precisely, we observed in the course of the proof of Lemma 3.3 that $3(a) \cup 3(b) = 3(ab)$, for all elements a and b. The result fails if we replace \cup with \cap, as the example below shows.

Example 4.9. It is known that if A is a Hilbert ring then so is the polynomial ring $A[x]$. It follows that the ring $A = \mathbb{C}[X,Y]$ is a Hilbert ring. Interestingly, this ring has the property that there are $f, g \in A$ such that $3(f) \cap 3(g)$ is not of the form $3(h)$ for any $h \in A$.

The reader is invited to also contrast this with the result proved in Lemma 3.3, regarding the “operator” $Z(\cdot)$, stating that for any a and b, there is a c (in fact, $c = ab$) such that $Z(a) \cap Z(b) = Z(c)$.

5. ON PROJECTABILITY PROPERTIES

In this section we seek conditions on \(A \) that make \(Z\text{Id}(A) \) satisfy the various projectability properties, such as those described in [12]. We shall assume that all rings in this section have zero Jacobson radical, so that the zero ideal is a \(z \)-ideal, and hence for any ideal \(I \), \(\text{Ann}(I) \) is a \(z \)-ideal by [16, Proposition 1.3]. Note, in particular, that for any \(I \in Z\text{Id}(A) \), the pseudocomplement of \(I \) is \(\text{Ann}(I) \).

Projectability conditions involve pseudocomplements and double pseudocomplements of compact elements. So we start by describing them. First, we deal with the simplest compact elements, namely, the ideals \(Z(a) \).

Lemma 5.1. If \(A \) has zero Jacobson radical, then for any \(a \in A \), \(\text{Ann}(Z(a)) = \text{Ann}(a) \), and hence \(\text{Ann}^2(Z(a)) = \text{Ann}^2(a) \).

Proof. Since \(a \in Z(a) \), it is clear that \(\text{Ann}(Z(a)) \subseteq \text{Ann}(a) \). To show the reverse inclusion, let \(x \in \text{Ann}(a) \), so that \(xa = 0 \), and suppose, by way of contradiction, that \(x \) does not annihilate \(Z(a) \). Then pick \(r \in Z(a) \) such that \(xr \neq 0 \). Since \(A \) has zero Jacobson radical, this implies there is a maximal ideal, say \(N \), such that \(xr \notin N \). Consequently, \(x \notin N \). Since \(xa = 0 \in N \) and \(N \) is prime, we must have \(a \notin N \). Since \(r \in Z(a) \), which says \(r \) belongs to every maximal ideal that contains \(a \), we have \(r \in N \). But now this implies \(xr \in N \); and we have a contradiction. \(\square \)

Corollary 5.2. For any \(a_1, \ldots, a_n \in A \),
\[
\left(Z(a_1) \vee \cdots \vee Z(a_n) \right)^* = \text{Ann}(a_1, \ldots, a_n),
\]
and consequently,
\[
\left(Z(a_1) \vee \cdots \vee Z(a_n) \right)^{**} = \text{Ann}^2(a_1, \ldots, a_n).
\]

Proof. We need only prove the first part. Applying Lemma 5.1, we have
\[
\left(Z(a_1) \vee \cdots \vee Z(a_n) \right)^* = Z(a_1)^* \wedge \cdots \wedge Z(a_n)^* = \text{Ann}(a_1) \cap \cdots \cap \text{Ann}(a_n) = \text{Ann}(a_1, \ldots, a_n),
\]
which proves the result. \(\square \)

We recall that an algebraic frame \(L \) is called **projectable** if \(c^{**} \vee c^* = 1 \) for every \(c \in \mathfrak{t}(L) \). Recall that a ring \(A \) is **weak Baer** if for every \(a \in A \), \(\text{Ann}(a) \) is generated by an idempotent. This is equivalent to saying the annihilator of any finitely generated ideal is a principal ideal generated by an idempotent. As observed in [8, 4.2], \(\text{RId}(A) \) is projectable if and only if \(A \) is weak Baer. The same holds for \(Z\text{Id}(A) \), as we show below. In proving one of the equivalences, we shall use [6, Lemma 5.2], which ensures that if \(h: L \to M \) is a surjective dense and codense coherent map, then \(L \) is projectable if and only if \(M \) is projectable.

Let us observe the following about the frame of \(z \)-elements.

Lemma 5.3. Let \(L \) be an algebraic frame, and write \(z: L \to zL \) for the coherent map induced by the \(z \)-nucleus on \(L \).

(a) The homomorphism \(z: L \to zL \) is dense.

(b) If \(L \) is compact and each \(x < 1 \) in \(L \) is below some \(m \in \text{Max}(L) \), then \(z \) is codense.
Proof. (a) If \(z(x) = 0 \), then \(ar(c) = 0 \) for each compact \(c \leq x \). Since each \(c \leq ar(c) \), this says \(x = 0 \) in light of coherence of \(L \).

(b) Suppose \(z(x) = 1 \). By compactness, there are finitely many \(c_1, \ldots, c_n \in \mathfrak{t}(L) \), each below \(x \), such that \(ar(c_1) \lor \cdots \lor ar(c_n) = 1 \). Hence \(c = c_1 \lor \cdots \lor c_n \) is a compact element below \(x \) such that \(ar(c) = 1 \). Thus, by the hypothesis on \(L \), there is no maximal element above \(c \), which then implies \(c = 1 \), and hence \(x = 1 \). \]

The result that follows is an improvement of [6, Proposition 5.3].

Proposition 5.4. The following are equivalent for a ring \(A \) with zero Jacobson radical.

1. \(\text{ZId}(A) \) is projectable.
2. \(z(\text{RId}(A)) \) is projectable.
3. \(A \) is weak Baer.

Proof. (1) \(\iff \) (2): This follows from Lemma 5.3, since \(z : \text{ZId}(A) \to z(\text{ZId}(A)) \) is dense and codense.

(1) \(\iff \) (3): Suppose that \(\text{ZId}(A) \) is projectable, and let \(a \in A \). Then \(Z(a)^* \lor Z(a)^{**} = A \), from which, by Lemma 5.1, we deduce that \(\text{Ann}(a) + \text{Ann}^2(a) \) is contained in no maximal ideal of \(A \). Thus, \(\text{Ann}(a) + \text{Ann}^2(a) = A \), and hence \(\text{Ann}(a) \) is a direct summand since \(\text{Ann}(a) \cap \text{Ann}^2(a) = 0 \), as \(A \) is reduced. Therefore, \(A \) is weak Baer.

Conversely, suppose that \(A \) is weak Baer, and let \(K = Z(a_1) \lor \cdots \lor Z(a_n) \) be a compact element in \(\text{ZId}(A) \). By Corollary 5.2, \(K^* = \text{Ann}(a_1, \ldots, a_n) \), and since \(A \) is weak Baer, there is an idempotent \(e \in A \) such that \(K^* = \langle e \rangle \). We deduce from this (by an argument as above) that \(K^* \lor K^{**} = A \), showing that \(\text{ZId}(A) \) is projectable.

In [12], the authors call an algebraic frame \(L \) *feebly projectable* if whenever \(a \land b = 0 \) in \(\mathfrak{t}(L) \), there exists \(c \in \mathfrak{t}(L) \) such that \(c^* \lor c^{**} = 1 \), \(a \leq c^* \) and \(b \leq c^{**} \). They show that for an algebraic frame that has a dense compact element (such as a coherent frame), this is equivalent to requiring that whenever \(a \land b = 0 \in \mathfrak{t}(L) \), there exists a complemented \(c \in L \) such that \(a \leq c \) and \(b \leq c^* \). In [11], the authors call a ring \(A \) *feebly Baer* if whenever \(ab = 0 \) in \(A \), there is an idempotent \(e \in A \) such that \(a \in \langle e \rangle \) and \(b \in (1 - e) \). The proof of the lemma that follows is omitted since it is fairly routine if one takes into account the fact that a surjective dense and codense frame homomorphism preserves and reflects complementedness.

Lemma 5.5. If \(h : L \to M \) is a surjective dense and codense coherent map, then \(L \) is feebly projectable iff \(M \) is feebly projectable.

Recall that the join and the meet of finitely many complemented elements are complemented, and, in fact, if \(c_1, \ldots, c_n \) are complemented, then

\[
(c_1 \land \cdots \land c_n)^* = c_1^* \lor \cdots \lor c_n^*.
\]

Recall also that if \(A \) is a reduced ring (and, hence, if \(A \) has zero Jacobson radical), then the bottom of \(\text{RId}(A) \) is the zero ideal.

Theorem 5.6. The following conditions regarding a ring \(A \) with zero Jacobson radical are equivalent.

1. \(A \) is feebly Baer.
2. \(\text{RId}(A) \) is feebly projectable.
3. \(\text{ZId}(A) \) is feebly projectable.
4. \(z(\text{RId}(A)) \) is feebly projectable.
Proof. (1) ⇒ (2): Assume that A is feebly Baer. Suppose K and H are two compact elements of $RId(A)$ with $K \land H = 0$. Then, by repeating elements if necessary, we may assume that there is a positive integer n and elements a_1, \ldots, a_n and b_1, \ldots, b_n with

$$K = [a_1] \lor \ldots \lor [a_n] \quad \text{and} \quad [b_1] \lor \ldots \lor [b_n].$$

The equality $K \land H = 0$ implies that, for any pair (i, j) of indices, $a_i b_j = 0$, and so there are idempotents e_{ij} in A with $a_i \in \langle e_{ij} \rangle$ and $b_j \in \langle 1 - e_{ij} \rangle$. We therefore have complemented elements γ_{ij} in $RId(A)$ with the property exhibited in the matrix below, where α_i and β_j abbreviate, respectively, $[a_i]$ and $[b_j]$.

$$
\begin{pmatrix}
\alpha_1 \leq \gamma_{11} & \leq & \gamma_{12} & \leq & \gamma_{1n} \\
\alpha_2 \leq \gamma_{21} & \leq & \gamma_{22} & \leq & \gamma_{2n} \\
\vdots & & \vdots & & \vdots \\
\alpha_n \leq \gamma_{n1} & \leq & \gamma_{n2} & \leq & \gamma_{nn}
\end{pmatrix}
$$

Now note that, for each index i and each index j,

$$\alpha_i \leq \gamma_{i1} \land \gamma_{i2} \land \ldots \land \gamma_{in} \quad \text{and} \quad \beta_j \leq \gamma_{1j} \land \gamma_{2j} \ldots \land \gamma_{nj},$$

so that

$$
H = \beta_1 \lor \ldots \lor \beta_n \leq \left(\bigwedge_{i=1}^n \gamma_{1i} \right) \lor \ldots \lor \left(\bigwedge_{i=1}^n \gamma_{in} \right)
$$

and

$$K = \alpha_1 \lor \ldots \lor \alpha_n \leq \left(\bigvee_{i=1}^n \gamma_{i1} \right) \lor \ldots \lor \left(\bigvee_{i=1}^n \gamma_{in} \right) \quad \text{and} \quad \left(\bigvee_{i=1}^n \gamma_{i1} \right) \land \ldots \land \left(\bigvee_{i=1}^n \gamma_{in} \right) \leq \left(\bigvee_{i=1}^n \gamma_{i1} \right) \lor \ldots \lor \left(\bigvee_{i=1}^n \gamma_{in} \right).$$

Thus, the element $C = \left(\bigvee_{i=1}^n \gamma_{i1} \right) \lor \ldots \lor \left(\bigvee_{i=1}^n \gamma_{in} \right)$ is complemented in $RId(A)$ and satisfies $K \leq C$ and $H \leq C^*$. Therefore, $RId(A)$ is feebly projectable.

(2) ⇒ (1): Assume that $RId(A)$ is feebly projectable. Let $ab = 0$ in A. Then $[a] \land [b] = [ab] = 0_{RId(A)}$ in $t(RId(A))$. Thus, there is a complemented $C \in RId(A)$ such that $[a] \leq C$ and $[b] \leq C^*$. By [2, Lemma 1], there is an idempotent $e \in A$ such that $C = [e]$, and hence $C^* = [1 - e]$. From this we deduce easily that $a \in \langle e \rangle$ and $b \in \langle 1 - e \rangle$. Therefore, A is feebly Baer.

(2) ⇔ (3): This follows from Proposition 3.5 and Lemma 5.5, since the homomorphism $\kappa : RId(A) \to ZId(A)$, defined just prior to Proposition 3.5 is dense and codense if A has zero Jacobson radical.

(2) ⇔ (4): This follows from Lemmas 5.3 and 5.5, since $z : RId(A) \to z(RId(A))$ is dense and codense.

Remark 5.7. That A is feebly Baer if and only if $RId(A)$ is feebly projectable does not require A to have zero Jacobson radical. It holds for any reduced ring – which is all that is needed for the zero of $RId(A)$ to be the zero ideal of A. □
6. $Z\text{Id}$ is a Functor

Following the idea (but not the notation) in [7], we let CRng_i denote the category whose objects are rings, and whose morphisms are ring homomorphisms $\phi : A \to B$ that contract z-ideals to z-ideals. We will show that the assignment $A \mapsto Z\text{Id}(A)$ is the object part of a functor $\text{CRng}_i \to \text{CohFrm}$, and that the association $A \mapsto 3_A : \text{RId} \to Z\text{Id}$ is a natural transformation. We shall need the following lemma.

Lemma 6.1. Let $\phi : A \to B$ be a ring homomorphism that contracts z-ideals to z-ideals. The mapping $\bar{\phi} : \mathfrak{t}(Z\text{Id}(A)) \to \mathfrak{t}(Z\text{Id}(B))$, defined by

$$\bar{\phi}(Z(a_1) \lor \cdots \lor Z(a_n)) = Z(\phi(a_1)) \lor \cdots \lor Z(\phi(a_n)),$$

is well defined, and is a lattice homomorphism.

Proof. (i) Let us show first that $\bar{\phi}$ is well defined. Consider elements a_1, \ldots, a_n and b_1, \ldots, b_k in A such that $Z(a_1) \lor \cdots \lor Z(a_n) = Z(b_1) \lor \cdots \lor Z(b_k)$. We must show that

$$Z(\phi(a_1)) \lor \cdots \lor Z(\phi(a_n)) = Z(\phi(b_1)) \lor \cdots \lor Z(\phi(b_k)).$$

For brevity, put $J = Z(\phi(b_1)) \lor \cdots \lor Z(\phi(b_k))$. Now, for any index $i = 1, \ldots, k$ we have $\phi(b_i) \in J$, which implies $b_i \in \phi^{-1}[J]$. Since $\phi^{-1}[J]$ is a z-ideal, this implies

$$Z(b_1) \lor \cdots \lor Z(b_k) \subseteq \phi^{-1}[J],$$

and hence

$$Z(a_1) \lor \cdots \lor Z(a_n) \subseteq \phi^{-1}[J].$$

Consequently, for each index $j = 1, \ldots, n$, $a_i \in \phi^{-1}[J]$, so that $\phi(a_i) \in J$, whence we deduce that $Z(\phi(a_1)) \lor \cdots \lor Z(\phi(a_n)) \subseteq J$, that is,

$$Z(\phi(a_1)) \lor \cdots \lor Z(\phi(a_n)) \subseteq Z(\phi(b_1)) \lor \cdots \lor Z(\phi(b_k)).$$

A similar argument establishes the reverse inclusion; so we have the desired equality.

(ii) Now we show that $\bar{\phi}$ is a lattice homomorphism. Since for any ring R the bottom and the top elements of $Z\text{Id}(R)$ are $Z(0)$ and $Z(1)$, it is immediate that $\bar{\phi}$ preserves the bottom and the top. If

$$K = Z(a_1) \lor \cdots \lor Z(a_n) \quad \text{and} \quad H = Z(b_1) \lor \cdots \lor Z(b_k)$$

are two elements of $\mathfrak{t}(Z\text{Id}(A))$, then, as shown in the proof of Theorem 3.4,

$$K \land H = Z(a_1 b_1) \lor \cdots \lor Z(a_n b_k) \lor \cdots \lor Z(a_n b_k).$$

Since $\phi(a_i b_j) = \phi(a_i) \phi(b_j)$ for any a_i and b_j, it follows routinely that $\bar{\phi}(K \land H) = \bar{\phi}(K) \land \bar{\phi}(H)$. We also have

$$\bar{\phi}(K \lor H) = \bar{\phi}\left(Z(a_1) \lor \cdots \lor Z(a_n) \lor Z(b_1) \lor \cdots \lor Z(b_k)\right)$$

$$= \left(Z(\phi(a_1)) \lor \cdots \lor Z(\phi(a_n)) \lor Z(\phi(b_1)) \lor \cdots \lor Z(\phi(b_k))\right)$$

$$= \bar{\phi}(K) \lor \bar{\phi}(H),$$

and so $\bar{\phi}$ is a lattice homomorphism. \qed

Thus, by [10, p. 64], for any $\phi : A \to B$ in CRng_i, there is a unique coherent map $\phi : Z\text{Id}(A) \to Z\text{Id}(B)$ that extends $\bar{\phi}$. Explicitly, it is given by

$$\hat{\phi}(J) = \bigvee_{Z\text{Id}(B)} \{ Z(\phi(a)) \mid a \in J \}.$$
Remark 6.2. A comment regarding the need to restrict to homomorphisms that contract z-ideals to z-ideals is in order. Suppose $\phi: A \to B$ is a ring homomorphism that fails to contract all z-ideals to z-ideals. Then, by [16, Lemma 1.7], there is a maximal ideal M in B for which $\phi^{-1}(M)$ not a z-ideal in A. Then there exists $x, y \in A$ such that $3(x) = 3(y)$, $x \in \phi^{-1}(M)$, and $y \notin \phi^{-1}(M)$. Then $Z(x) = Z(y)$, but $Z(\phi(x)) \neq Z(\phi(y))$ since M is a maximal ideal of B containing $\phi(x)$ but not $\phi(y)$. Thus, for such a homomorphism, $\overline{\phi}$ as in Lemma 6.1 would not be well defined.

As in Proposition 3.5, for any $A \in \text{CRng}_3$, let $\kappa_A: \text{RId}(A) \to Z\text{Id}(A)$ be the coherent map that sends a radical ideal to the smallest z-ideal containing it. Recall that we showed in Proposition 3.5 that $\kappa_A([a]) = Z(a)$, for any $a \in A$. Recall also that, for any ring homomorphism $\phi: A \to B$, $\text{RId}(\phi)([a]) = [\phi(a)]$.

Proposition 6.3. The mappings $A \mapsto Z\text{Id}(A)$ and $\phi \mapsto \overline{\phi}$ define a functor $Z\text{Id}: \text{CRng}_3 \to \text{CohFrm}$ such that $A \mapsto \kappa_A: \text{RId} \to Z\text{Id}$ is a natural transformation.

Proof. That $Z\text{Id}$ preserves identity follows from the fact that $J = \bigvee \{Z(a) \mid a \in J\}$, for any $J \in Z\text{Id}(A)$. To see that $Z\text{Id}$ preserves composites, let $\phi: A \to B$ and $\tau: B \to C$ be morphisms in CRng_3. To check that $Z\text{Id}(\tau \cdot \phi) = Z\text{Id}(\tau) \cdot Z\text{Id}(\phi)$, we need only check that these two coherent maps agree on basic compact elements. Consider then any basic compact element $Z(a) \in \tau(Z\text{Id}(A))$, and observe that

$$\left(Z\text{Id}(\tau) \cdot Z\text{Id}(\phi) \right)(Z(a)) = Z\text{Id}(\tau)(Z(\phi(a))) = Z(\tau(\phi(a))) = Z\text{Id}(\tau \cdot \phi)(Z(a)).$$

Therefore, $Z\text{Id}: \text{CRng}_3 \to \text{CohFrm}$ is a functor.

To prove the claimed naturality, given $\phi: A \to B \in \text{CRng}_3$, we must show that the square

$$\begin{array}{ccc}
\text{RId}(A) & \xrightarrow{\kappa_A} & Z\text{Id}(A) \\
\text{RId}(\phi) \downarrow & & \downarrow Z\text{Id}(\phi) \\
\text{RId}(B) & \xrightarrow{\kappa_B} & Z\text{Id}(B)
\end{array}$$

commutes. For any basic compact element $[a] \in \tau(\text{RId}(A))$, we have

$$\left(Z\text{Id}(\phi) \cdot \kappa_A \right)([a]) = Z\text{Id}(\phi)(Z(a)) = Z(\phi(a)) = \kappa_B([\phi(a)]) = (\kappa_B \cdot \text{RId}(\phi))(\phi),$$

which then shows that $Z\text{Id}(\phi) \cdot \kappa_A = \kappa_B \cdot \text{RId}(\phi)$, by coherence. \hfill \Box

The functorial properties of $Z\text{Id}$ will be a subject of another occasion.

Acknowledgements

(a) We are grateful to the referee for comments that have significantly helped to improve the original version of the paper, especially with regard to presentation.

(b) Ighedo acknowledges funding from the College of Science, Engineering and Technology at the University of South Africa that enabled her to visit McGovern in December 2017, during which time some of the results in this paper were obtained.
REFERENCES