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Abstract Motivated by recent results on commutative rings with zerodivisors ([2],
[11]), we investigate the difference between the three notions of locally classical,
maximally classical, and classical rings. Motivated also by results in [12], we ex-
plore these notions when restricted to certain subsets of the prime spectrum of the
ring. As an application, we examine the case of locally classical rings of continuous
functions, the case of maximally classical and classical rings having already been
considered ([1], [14]).

1 Introduction and Main Results

Throughout, we shall assume that R denotes a commutative ring with identity. We
denote the classical ring of quotients (also known as the total quotient ring) of R
by q(R). When a ring equals its classical ring of quotients, the ring is said to be
classical. Classical rings are characterized by the simple condition that all regular
elements are units. For any ring R, q(R) is a classical ring.

A ring-theoretic property is said to be local if an arbitrary ring R satisfies the
property if and only if the localization RP satisfies the property for every prime
ideal P of R. For example, “reduced” is a well-known local property, where a ring is
reduced if it has no nonzero nilpotent elements. As a second example, we note the
useful fact that “regular” is also a local property, which we show in the following
lemma.

Lemma 1. For an element r ∈ R, the following statements are equivalent.
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1. r is regular.
2. r

1 is regular in RP for every prime ideal P⊂ R.
3. r

1 is regular in RM for every maximal ideal M ⊂ R.

Proof. For (1) implies (2), if r
1 ·

a
s = 0 in RP, then ra · t = 0 for some t ∈ RrP; if

r is regular, then at = 0 in R forces a
s = 0 in RP. (2) implies (3) is trivial. For (3)

implies (1), if ra = 0 for some a ∈ R, then r
1 ·

a
1 = 0 and r

1 regular in RM for every
maximal ideal M ⊂ R implies that the annihilator AnnR(a) of a in R is contained in
no maximal ideal of R; that is, R annihilates a, so that a = 0.

The goal of this paper is to investigate the extent to which “classical” is a local
property. The first motivation comes from [2] and [11], in which it is shown that
“Prüfer ” is not a local property. (Recall that a ring R is called a Prüfer ring if
every finitely generated regular ideal of R is invertible. Note that a classical ring
is Prüfer, because it has no proper regular ideals.) The ring R is said to be locally
(respectively, maximally) Prüfer if the localization RP is a Prüfer ring for every
prime (respectively, maximal) ideal P⊂R. Boynton showed in [2] that locally Prüfer
implies Prüfer but not conversely. Klingler, Lucas, and Sharma showed in [11] that
maximally Prüfer implies Prüfer but not conversely, and that maximally Prüfer does
not imply locally Prüfer. These results are summarized by the diagram

locally Prüfer ⇒maximally Prüfer ⇒ Prüfer

in which neither arrow is reversible. Moreover, examples show that these implica-
tions are not reversible even under the extra hypothesis that the ring is reduced.

In this paper we establish the corresponding results for “classical.” We shall say
that a ring R is locally (respectively, maximally) classical if the localization RP is a
classical ring for every prime (respectively, maximal) ideal P ⊂ R. Clearly, locally
classical implies maximally classical; our main theorem of this section establishes
the second implication.

Theorem 1. If R is maximally classical, then it is classical.

Proof. It is easier to prove the contrapositive, so suppose that R is not classical, say
r ∈ R is regular but not a unit. Then there is a maximal ideal M ⊂ R such that r ∈M,
so r

1 is not a unit in the localization RM . By Lemma 1, r
1 is regular, so RM is not

classical, and hence R is not maximally classical.

Examples 2 and 3 below show that these two implications are not reversible, even
under the additional hypothesis that the ring is reduced. That is, Example 2 gives
a (reduced) ring R which is classical but not maximally classical, and Example 3
gives a (reduced) ring R which is maximally classical but not locally classical.

The second motivation for this paper comes from [12], in which the authors con-
sidered restricting the Prüfer property locally to only the regular or semiregular,
prime or maximal ideals. (Recall that an ideal is called semiregular if it contains a
finitely generated dense ideal, that is, a finitely generated ideal whose annihilator is
zero.) Restricting the locally (or maximally) classical property to regular prime (or
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maximal) ideals would be pointless, however, since by Lemma 1, a regular nonunit
in a prime ideal will remain a regular nonunit in the localization at that prime ideal.
Thus, “regular locally classical” and “regular maximally classical” are equivalent to
classical; that is, a ring is classical if and only if it has no regular prime ideals if and
only if it has no regular maximal ideals. On the other hand, restricting the locally
(or maximally) classical property to semiregular prime (or maximal) ideals does
produce a weaker condition, as we shall show. Therefore, we shall say that a ring
R is semiregular locally (respectively semiregular maximally) classical if the local-
ization RP is a classical ring for every semiregular prime (respectively semiregular
maximal) ideal P⊂ R.

Obviously locally classical implies semiregular locally classical, and semiregu-
lar locally classical and maximally classical each implies semiregular maximally
classical. Moreover, a regular element generates a finitely generated ideal with zero
annihilator, so the proof of Theorem 1 shows that, if the ring R is not classical, then it
is not semiregular maximally classical. Therefore, semiregular maximally classical
implies classical, and we obtain the following diagram of implications.

Diagram 2
LC

 (w�
MC

�'

SRLC

v~
SRMC

��
C

where LC abbreviates locally classical, SRLC abbreviates semiregular locally clas-
sical, etc. Examples 5 and 6 below (together with the examples already mentioned)
show that none of the arrows is reversible, and indeed, that there are no other impli-
cations than those implied by the diagram, even under the added hypothesis that the
ring is reduced.

The third motivation for this paper comes from the theory of rings of (real-
valued) continuous functions. For a topological space X , let C(X) denote the set
of continuous functions from the space X to the real field R; C(X) is a commutative
ring with identity under pointwise addition and multiplication. One area of particular
research interest has been determining conditions on the space X equivalent to some
desired property of the ring C(X). (See [8] as a good general reference for the theory
of rings of continuous functions.) For example, Levy [14] gave necessary and suf-
ficient conditions on X that C(X) be classical, and Banerjee, Ghosh, and Henriksen
[1] gave necessary and sufficient conditions on X that C(X) be maximally classical.
We devote section 2 of this paper to reviewing the necessary terminology for these
results from the theory of rings of continuous functions, and to constructing two
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examples to sharpen Theorem 1. We also characterize the topological spaces X for
which the ring C(X) is locally classical (Theorem 7).

Note that the ring C(X) has Property A, that is, every semiregular ideal of C(X)
is regular. This follows from the fact that in C(X), the annihilator of f ,g equals the
annihilator of f 2+g2. Thus, for C(X), semiregular locally (respectively maximally)
classical is equivalent to regular locally (respectively maximally) classical, both of
which, as noted above, are equivalent to classical. Therefore, to establish the claim
made about the completeness of the implications in diagram (2), we need to look
for examples beyond rings of continuous functions. This we do in section 3, where
we also collect some miscellaneous results on classical rings.

We finish the current section by developing a useful condition on the prime ideal
P which, for a reduced ring R, is equivalent to the localization RP being classical.

For prime ideal P ⊂ R, we denote by O(P) the set of elements of R annihilated
by an element of RrP:

O(P) = {a ∈ R : there is an x ∈ RrP such that ax = 0}

Note that O(P) ⊆ P; we easily obtain the following alternative description of RP,
since O(P) is the kernel of the natural map from R to the localization RP. (See
Section 4 of [9] for details.)

Proposition 1. Let P be a prime ideal of R, and set R̄ = R/O(P) and P̄ = P/O(P).
Then R̄P̄

∼= RP.

If the ring R is reduced, the minimal prime ideals of R play a crucial role in
determining whether or not R is locally or maximally classical. The following char-
acterization of minimal primes in reduced rings will prove useful.

Lemma 2. [10, Corollary 2.2] Let R be a reduced ring and suppose P is a prime
ideal of R. Then P is a minimal prime ideal if and only if for each a ∈ P there exists
an element x ∈ RrP such that ax = 0.

For a reduced ring R and prime ideal P ⊂ R, the following proposition gives an
elegant description of the ideal O(P).

Proposition 2. If R is a reduced ring and P is a prime ideal of R, then

O(P) = ∩{Q⊆ P : Q is a minimal prime},

the intersection of the minimal primes of R contained in P.

Proof. Let a ∈ O(P) and Q be a minimal prime contained in P. By definition, there
is an element x ∈ RrP such that ax = 0. Since Q ⊆ P, it follows that x /∈ Q, and
hence a ∈ Q. This demonstrates one containment.

For the opposite containment, if a is in all of the minimal primes contained in
P, then a

1 is in all of the minimal primes of the localization RP, so in the nilradical
of RP. Since R is assumed to be reduced, RP is also reduced (as noted above), and
hence a

1 = 0 in RP. This implies that the annihilator of a is not contained in P, so
a ∈ O(P).
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For a reduced ring R and prime ideal P ⊂ R, we can now determine conditions
on P which guarantee that the localization RP is classical.

Theorem 3. Let R be a reduced ring and P be a prime ideal of R. The following
statements are equivalent.

1. The localization RP is classical.
2. For every a ∈ P, the annihilator of a in R is not contained in O(P).
3. P =

⋃{Q ⊆ P : Q is a minimal prime}, the union of the minimal primes of R
contained in P.

Proof. (1) implies (2). Let a ∈ P. If a ∈O(P), then by definition there is an element
x ∈ RrP such that ax = 0, so the annihilator of a is not contained in P, and so not
contained in O(P). Assume instead that a ∈ PrO(P). By hypothesis, the localiza-
tion RP is classical, so a

1 must be a zerodivisor, and hence there is a nonzero b
s ∈ RP

such that a
1 ·

b
s = 0 in RP. This means that there is some t /∈ P such that abt = 0. If

bt ∈ O(P), then btx = 0 for some x ∈ RrP, but then tx ∈ RrP would imply b
s = 0

in RP, contrary to assumption. Therefore, abt = 0 with bt /∈ O(P), as required.
(2) implies (3). Clearly,

⋃{Q⊆ P : Q is a minimal prime} ⊆ P. Conversely, sup-
pose a ∈ P, so that, by hypothesis, ab = 0 for some b /∈ O(P). By Proposition 2,
there is a minimal prime Q⊆ P such that b /∈ Q. Then ab = 0 and Q prime implies
a ∈ Q, proving the opposite containment.

(3) implies (1). Let a
s ∈ PRP, so that a ∈ P. By hypothesis, a ∈ Q for some min-

imal prime Q ⊆ P. By Lemma 2, there is an element x /∈ Q such that ax = 0. By
Proposition 2, x /∈O(P), so x

1 is a nonzero element of RP, whence a
s is a zerodivisor

of RP.

Quantifying over all prime or all maximal ideals of the reduced ring R, Theorem
3 yields criteria for R to be locally or maximally classical.

Corollary 1. If R is reduced, then:

1. R is locally classical if and only if every prime ideal is a union of minimal prime
ideals.

2. R is maximally classical if and only if every maximal ideal is a union of minimal
prime ideals.

2 Rings of Continuous Functions

We recall a useful classification of local Prüfer rings. First, recall that a ring R is
called a Bézout ring if every finitely generated ideal is principally generated. In the
weaker case that every finitely generated regular ideal is principally generated we
say R is quasi-Bézout. Observe that a quasi-Bézout ring is a Prüfer ring. Of course,
there are Prüfer domains which are not Bézout (and hence not quasi-Bézout). The-
orem 2 of [15] states that for rings of continuous functions the notions of quasi-
Bézout and Prüfer are equivalent. It is also the case that these conditions are equiv-
alent for local rings. We let Z(R) denote the set of zerodivisors of the ring R.
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Theorem 4. [15, Proposition] Let R be a local ring. The following statements are
equivalent.

1. R is a Prüfer ring.
2. R is a quasi-Bézout ring.
3. Z(R) is an (prime) ideal of R and R/Z(R) is a valuation domain.

Remark 1. Recall the domain is a valuation domain if and only if its ideals are
linearly-ordered, i.e. the domain is a chained ring. When the ring has zerodivisors
the distinction between valuation rings and chained rings becomes slightly more
delicate. For more information on this we suggest the reader peruse [13].

Next, we give a brief account of the theory of rings of continuous functions. For a
topological space X , we let C(X) denote the ring of real-valued continuous functions
on X . The subring of bounded continuous functions on X is denoted by C∗(X). We
shall assume that X is a Tychonoff space, that is, completely regular and Hausdorff.

Next, recall the following subsets of X that are useful in describing algebraic
properties of C(X). For f ∈C(X), we denote its zeroset by Z( f ) = {x ∈ X : f (x) =
0}. The set-theoretic complement of Z( f ) in X is denoted by coz( f ) and is called
the cozeroset of f . A subset V ⊆ X is called a zeroset (respectively, cozeroset) if
there is some f ∈C(X) such that V = Z( f ) (respectively, V = coz( f )). We shall use
clXV and intX V to denote the closure and interior of V in X , respectively. We shall
also feel free to drop the subscripts on these operators when it is clear which space
is being discussed.

For a Tychonoff space X , the Stone-Čech compactification of X , denoted βX , is
the unique compact space (up to homeomorphism) containing X densely and C∗-
embedded. Recall that a subspace Y of a space X is said to be C∗-embedded in X if
every bounded continuous function on Y has a continuous extension to X . Our main
reference for C(X) is [8].

For p ∈ βX we form two ideals of C(X):

Mp = { f ∈C(X) : p ∈ clβX Z( f )}

and

Op = { f ∈C(X) : clβX Z( f ) is a neighborhood of p}
= { f ∈C(X) : there is a βX-neighborhood V of p such that V ∩X ⊆ Z( f )}.

It is known that each Mp is a maximal ideal of C(X) and that every maximal ideal
of C(X) is of the form Mp for some (unique) p ∈ βX ; this is known as the Gelfand-
Kolmogoroff Theorem. The ring C(X) is a pm-ring, that is, every prime ideal is
contained in a unique maximal ideal. Furthermore, for any prime P ∈ Spec(C(X))
the set of prime ideals containing P forms a chain, i.e. Spec(C(X)) is a root system.
Since Op is a radical ideal, it follows that Op is the intersection of the minimal prime
ideals contained in Mp. (When p ∈ X we instead write Mp and Op and notice that
Mp = { f ∈C(X) : f (p) = 0} and Op = { f ∈C(X) : p ∈ intX Z( f )}.)
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Chronologically, Gilman and Henriksen [6] characterized when C(X) is a von
Neumann regular ring, calling such a space X a P-space. It is known that X is a P-
space if and only if the topology of open sets is closed under countable intersections
if and only if every zeroset is open. Next, the authors classified in [7] when C(X)
is a Bézout ring, calling such a space an F-space. X is an F-space if and only if
every cozeroset is C∗-embedded if and only if C(X) is an arithmetical ring. Then, in
[4], the authors classified when C(X) is quasi-Bézout calling such a space X a quasi
F-space. X is a quasi F-space if and only if every dense cozeroset is C∗-embedded.
In [15] the authors proved that for C(X) (and in a more general situation), C(X) is a
quasi-Bézout ring if and only if C(X) is a Prüfer ring. Formally:

Theorem 5. [15, Theorem 2][4, Theorem 5.1] For a space X the following state-
ments are equivalent.

1. C(X) is a Prüfer ring.
2. Every dense cozeroset of X is C∗-embedded, that is, X is a quasi F-space.
3. βX is a quasi F-space.
4. C∗(X) is a Prüfer ring.

Levy [14] called a space X an almost P-space if the interior of every nonempty
zeroset is nonempty. It follows that every P-space is an almost P-space. It also fol-
lows that in an almost P-space there are no non-trivial dense cozerosets of X . Since
f ∈C(X) is regular precisely when coz( f ) is dense we obtain:

Theorem 6. The space X is an almost P-space if and only if C(X) is a classical
ring. In particular, an almost P-space is a quasi F-space.

Example 1. The one-point compactification of an uncountable discrete space, αD,
is an example of an almost P-space. If X is locally compact and real compact but
not compact, then βX rX is an almost P-space ([5, Lemma 3.1]).

The question of when C(X)M is classical for every maximal ideal was addressed
in [1], though not in these terms. The authors call X a UMP-space (pronounced U -
M - P - space) if every maximal ideal of C(X) is the union of minimal prime ideals.
An application of Theorem 3 yields the following result.

Corollary 2. [1, Theorem 2.2] The space X is a UMP-space if and only if C(X) is
maximally classical.

Example 2. It is pointed out in [1] that a UMP-space is an almost P-space. This also
follows from the fact that a maximally classical ring is classical. In Observation 1.6
of [1] it is pointed out that the space βNrN is an example of an almost P-space
which is not a UMP-space. Therefore, C(βNrN) is classical but not maximally
classical.

Example 3. Let D be an uncountable discrete space and let αD denote its one-point
compactification. The ring C(αD) is a maximally classical ring, equivalently, X is
a UMP-space (see [1, Example 1.8]). However, C(αD) is not a locally classical
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ring. In C(αD) every non-maximal prime ideal (necessarily lying beneath Mα ) has
a unique minimal prime ideal beneath it ([3, Proposition 3]). Therefore, if P is any
non-maximal prime, then O(P) is a prime ideal. Thus, C(X)P is a domain. To be
classical we would need C(X)P to be a field, which occurs precisely when P=O(P),
i.e. P is a minimal prime ideal. Since there are primes which are both non-maximal
and non-minimal prime ideals of C(αD) it follows that C(X) is not locally classical.

A recap is in order. C(X) is classical if and only if X is an almost P-space, and
C(X) is maximally classical if and only if X is a UMP-space. We now come to the
main theorem in this section, characterizing when C(X) is locally classical.

Theorem 7. Let X be a space. The following statements are equivalent.

1. The ring C(X) is a locally classical ring.
2. The ring C(X) is a von Neumann regular ring.
3. X is a P-space.

Before we supply a proof we recall a needed definition. Recall that an ideal I ⊂
C(X) is called a z-ideal if f ∈ I and Z( f ) = Z(g) implies that g ∈ I. For example,
each maximal ideal and each minimal prime ideal of C(X) is a z-ideal.

Lemma 3. If {Iσ}σ∈τ is a collection of z-ideals such that the union I =
⋃

σ∈τ Iσ

forms an ideal, then I is a z-ideal.

Proof. Let f ∈ I and Z( f ) = Z(g). By hypothesis there is a σ ∈ τ such that f ∈ Iσ .
Since Iσ is a z-ideal it follows that g ∈ Iσ , whence g ∈ I.

Remark 2. Lemma 3 can be generalized to the join of z-ideals being a z-ideal using
[8, Lemma 14.8]. However, we do not need the full version here, and so we provided
a proof for completeness sake.

We can now prove Theorem 7.

Proof. That (2) and (3) are equivalent has already been pointed out. If C(X) is von
Neumann regular, then it is locally a field, hence locally classical, so (2) implies (1).

For (1) implies (2), suppose that C(X) is locally classical; we show that each
point in X is a P-point. Let p ∈ X . If Op ( Mp, then it is well-known that there
exists a prime ideal P beneath Mp which is not a z-ideal ([8, Section 14.13]). Since
C(X)P is classical, by Proposition 3 we know that P is the union of the minimal
prime ideals beneath it. But minimal prime ideals are z-ideals, so it follows from
Lemma 3 that P is a z-ideal, contradiction. Therefore, Op = Mp, and hence p is a
P-point. Consequently, X is a P-space.

For reduced rings, being von Neumann regular is equivalent to being zero-
dimensional, so Theorem 7 means that a ring C(X) is locally classical if and only if
it is zero-dimensional. The next example shows that, for rings in general, this is not
the case, even for reduced rings.
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Example 4. Let k be a field and D = k[[x]] a power series ring in one indeterminate
over k; so D is a discrete valuation domain with unique maximal ideal M = xk[[x]].
Set B =⊕n∈NM, the direct sum of countably many copies of M. One can define a
ring structure on the cartesian product R = D×B using coordinatewise addition,
and multiplication defined by (a,b)(c,d) = (ac,ad + bc+ bd); in [12], R is called
a ring of form A+ ZB[[Z]]. By [12, Theorem 3.7 (8)], R is a local ring of Krull
dimension 1, and by [12, Theorem 3.7 (1) and (2)], R is a classical ring. One easily
checks that R is reduced, so R is locally a field at all minimal primes and hence at all
non-maximal primes. It follows that R is a locally classical, reduced ring with Krull
dimension equal to 1.

3 Additional Examples and Further Results

The ring R = C(βNrN) of Example 2 is classical but not maximally classical.
As noted in the introduction, since R has property A, it is also semiregular locally
(and hence semiregular maximally) classical. Thus, in the notation of diagram (2),
no member of {C, SRMC, SRLC} implies a member of {MC, LC}. Similarly, the
ring R =C(αD) of Example 3 is maximally classical but not locally classical; that
is, MC does not imply LC. Moreover, both examples are reduced, so none of these
implications holds even under the additional assumption that the ring is reduced.

To complete the claim following diagram (2) that no implications hold other than
those implied by the diagram, we give additional (reduced) examples showing that C
implies neither SRMC nor SRLC (Example 5), and that neither MC nor SRMC im-
plies SRLC (Example 6). It is then straightforward to verify that the only necessary
implications are the (downward) directed paths in diagram (2).

Example 5. The ring R of the form A+B in [12, Example 3.5] is classical (R= q(R),
the total quotient ring of R), while the maximal ideal N +B of R is semiregular,
and RN+B = D is an integral domain but not a field. Therefore, R is classical but
not semiregular maximally classical, and hence (in the notation of diagram (2)), C
implies neither SRMC nor SRLC. Moreover, the ring R is reduced.

Example 6. The ring Q(R) = RN+B = D̂+B (where R = D+B) is a ring of the form
A+B[[Z]] in [12, Example 3.11]. The ring D̂+B is classical (because Q(R) is the
total quotient ring of R), and N +B is the unique maximal ideal of D̂+B by [12,
Theorem 3.7 (8)] (because N is the unique maximal ideal of D̂). Therefore, D̂+B is
a local classical ring and hence maximally (and semiregular maximally) classical.
The ideal P+B (where P = (X2,X3)D̂) is a semiregular prime ideal of both R and
D̂+B (so that, incidentally, the maximal ideal N+B of D̂+B is semiregular as well),
and (D̂+B)P+B = RP+B = D̂P is an integral domain but not a field. Therefore, D̂+B
is (semiregular) maximally classical but not semiregular locally classical, and hence
(in the notation of diagram (2)), neither MC nor SRMC implies SRLC. Again, the
ring D̂+B is reduced.
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We conclude this section with a few miscellaneous results and examples con-
cerning classical rings. We start by noting that “classical” lifts modulo the nilradical
but does not pass modulo the nilradical.

Proposition 3. If R/N is classical, where N is the nilradical of R, then R also clas-
sical.

Proof. Let r be a regular element of R. We claim that r+N is a regular element of
R/N. If (r +N)(s+N) = 0+N for some s ∈ R, then (rs)n = 0 for some n ∈ N,
so regularity of r (and thus of rn) implies that s ∈ N, proving the claim. Now by
hypothesis, r +N is a unit in R/N, from which it follows that r is a unit in R.
Therefore, R is classical.

Example 7. The converse of Proposition 3 is not true. Let K be a field and set
R = K[x,y](x,y)/(xy,y2). Observe that R is a local ring whose maximal ideal con-
sists of zerodivisors, whence R is classical. Moreover, the nilradical of R is N =
(y+(xy,y2)), and R/N is isomorphic to K[x](x), which is a domain but not a field.
Consequently, R/N is not classical.

Finally, we show that a “trivial extension” of a classical ring is classical. Recall
that, for ring R and R-module M, we can form the trivial extension R ∝ M (also called
the idealization) starting with the additive group R×M, and defining multiplication
by (r,m)(s,n) = (rs,rn+ sm) (see [10, Section 25] for details). In the following
theorem, we collect together some important (known) facts about trivial extensions.

Theorem 8. If R is a ring and M is an R-module, then:

1. (r,m) ∈ R ∝ M is a unit if and only if r ∈ R is a unit.
2. (r,m) ∈ R ∝ M is regular if and only if r ∈ R is regular and r acts faithfully on M

(that is, rn = 0 implies n = 0 for n ∈M).
3. J is a prime ideal of R ∝ M if and only if J = P ∝ M for some prime ideal P of R,

in which case (R ∝ M)J ∼= RP ∝ MP.
4. If P is a prime ideal of R such that P ∝ M is a semiregular prime ideal of R ∝ M,

then P is a semiregular prime ideal of R.

Proof. (1) is [10, Theorem 25.1 (6)]; (2) is [10, Theorem 25.3]; and (3) is [10,
Theorem 25.1 (3) and Corollary 25.5 (2)].

To prove (4), suppose that P⊂ R is a prime ideal and (r1,m1), . . . ,(rt ,mt) ∈ P ∝

M generate a subideal J with zero annihilator. If x∈ R annihilates the subideal I of P
generated by r1, . . . ,rt , then for each index i, (0,xmi) annihilates J, so that xmi = 0.
Thus, (x,0) annihilates J, which forces x = 0, and hence I has zero annihilator.
Therefore, P is also semiregular.

As an immediate consequence, we get the following characterization of “classi-
cal” for trivial extensions.

Corollary 3. For a ring R and R-module M, R ∝ M is classical if and only if every
regular element of R that acts faithfully on M is a unit in R.
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Note that (0) ∝ M is a nilpotent ideal of R ∝ M and hence contained in the nil-
radical. Although (0) ∝ M need not equal the nilradical of R ∝ M, the result of
Proposition 3 still holds.

Corollary 4. If R is a classical ring and M is an R-module, then R ∝ M is classical.

Proof. If (r,m) ∈ R ∝ M is regular, then r ∈ R is regular by Theorem 8 (2), so r is a
unit by assumption, and hence (r,m) is a unit by Theorem 8 (1).

In fact, we can extend this result to both “locally classical” and “maximally clas-
sical,” and to their semiregular analogs.

Corollary 5. Let R be a ring and M an R-module.

1. If R is (semiregular) locally classical, then so is R ∝ M.
2. If R is (semiregular) maximally classical, then so is R ∝ M.

Proof. By Theorem 8 (3), the prime (respectively maximal) ideals of R ∝ M have
the form P ∝ M as P ranges over the prime (respectively maximal) ideals of R, and
(R ∝ M)P∝M ∼= RP ∝ MP. Moreover, by Theorem 8 (4), if P ∝ M is a semiregular
prime ideal of R ∝ M, then P is a semiregular prime ideal of R, so both statements
(and their semiregular analogs) follow immediately from Corollary 4.

Note that the converse to Theorem 8 (4) does not hold. For example, if p ∈ Z is
prime, then pZ ∝ Z/pZ is not a semiregular ideal of Z ∝ Z/pZ (being annihilated
by (0,1)), even though pZ is a regular prime ideal of Z. We conclude by adapting
this example to show that the converses of the statements in Corollaries 4 and 5 do
not hold either.

Example 8. If p∈Z is prime, then Z(p) ∝Z(p)/pZ(p) is a classical ring by Corollary
3, because only the elements of Z(p)r pZ(p) act faithfully on Z(p)/pZ(p). On the
other hand, clearly Z(p) is not classical, so that the converse of Corollary 4 fails.
Since Z(p) (and hence also Z(p) ∝ Z(p)/pZ(p)) is local, the converse of Corollary 5
(2) also fails. In fact, Z(p) ∝ Z(p)/pZ(p) is also locally classical, because, by Theo-
rem 8 (3), its only non-maximal prime ideal is (0) ∝ Z(p)/pZ(p), and

(Z(p) ∝ Z(p)/pZ(p))(0)∝Z(p)/pZ(p)
∼= (Z(p))(0) ∝ (Z(p)/pZ(p))(0) ∼=Q.

Thus, Corollary 5 (1) fails as well. Finally, since Z(p) ∝ Z(p)/pZ(p) is locally classi-
cal, it is semiregular locally and semiregular maximally classical, but Z(p) is neither,
so the converse of the semiregular variations of Corollary 5 fail too.
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