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Abstract. An h-local domain is a domain for which each nonzero prime ideal
is contained in a unique maximal ideal and each nonzero element has finite char-
acter. In [17], the author generalizes the notion to rings with zero-divisors by
restricting the definition to regular ideals and elements. In this article, we give a
characterization of when C(X) the ring of continuous real-valued functions on a
space X is an h-local ring. We are left with more questions than answers.

1. Introduction

In the theory of integral domains, the concept of an h-local domain is well-known.
Originally defined by Matlis [15], later Olberding [16] supplied a list of equivalent
conditions for a domain to be an h-local domain. Interestingly, P. Jaffard [11], prior
to Matlis, studied domains he called Dedekind type. In [6, Theorem 2.1.5], the
authors show that a domain is h-local if and only if it is of Dedekind type. One
of the main goals of a recent dissertation [17] was to generalize the concept of an
h-local domain to the case of rings with zero-divisors. Our interest in this article is
to characterize the h-local condition for rings of continuous functions.

Recall that an integral domain R is said to be an h-local domain if each nonzero
prime ideal of R is contained in a unique maximal ideal and each nonzero element
has finite character. As has become customary in generalizing to rings with zero-
divisors the focus is on regular elements (i.e. non-zero-divisors). Throughout by
ring we mean a (non-trivial) commutative ring with identity. An ideal is said to be
regular if it contains a regular element.

Definition 1.1. Let R be a ring. We say R is h-local if each regular prime ideal
of R is contained in a unique maximal ideal and each regular element is contained
in at most finitely many maximal ideals of R.

Remark 1.2. In [14], the authors study h-local rings but their definition is a bit
stronger in the sense that they do not restrict to regular prime ideals nor regular
elements.

Our interest in h-local rings was spurred on by attendance in a seminar at Florida
Atlantic University covering material in the dissertation by A. Omairi ([17]). We
were interested in understanding what the h-local condition means in the context
of rings of real-valued continuous functions.

We shall employ the following notation. For a ring R, Spec(R) denotes its space
of prime ideals and Max(R) the subspace of maximal ideals.
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2. When C(X) is h-local

Throughout, C(X) denotes the ring of of real-valued continuous functions defined
on the topological space X. We assume throughout that X is a Tychonoff space,
that is, completely regular and Hausdorff. Rings of the form C(X) are always pm-
rings, that is, every prime ideal is contained in a unique maximal ideal and so half
of the definition of h-local is already satisfied. We state this formally.

Lemma 2.1. The ring C(X) is h-local if and only if every regular element of C(X)
is contained in at most finitely many maximal ideals of X.

We assume knowledge of the ring C(X) and cite [7] as our main reference. In
order to keep the material self-contained we recall that for f ∈ C(X), the zero-set
of f is the set

Z(f) = {x ∈ X : f(x) = 0}.
The set-theoretic complement of Z(f) is denoted by coz(f) and is called the cozero-
set of f . A subset of X is called a zero-set (resp. cozero-set) if it has the form Z(f)
(resp. coz(f)) for some f ∈ C(X). It is known that a Hausdorff space is Tychonoff
if and only if the set of cozero-sets forms a base for the open sets. All zero-sets are
closed but not conversely. We let the operators int (·) and cl (·) denote the interior
and closure of a subset of X.

Observe that the invertible and regular elements of C(X) can be characterized
by their zero-sets. Namely, f ∈ C(X) is invertible if and only if Z(f) = ∅, and
f ∈ C(X) is regular if and only if int Z(f) = ∅.

To each x ∈ X there is a corresponding maximal ideal of C(X), namely

Mx = {f ∈ C(X) : f(x) = 0}.
One version of the Gelfand-Kolmogorov Theorem states that the space of maxi-
mal ideals of C(X) equipped with the hull-kernel (aka Zariski) topology, denoted
Max(C(X)), is homeomorphic to the Čech-Stone compactification of X, denoted
βX; we view βX as the space of zero-set ultrafilters on X. Furthermore, the
Gelfand-Kolmogorov Theorem ([7, Theorem 7.3]) states that for p ∈ βX,

Mp = {f ∈ C(X) : Z(f) ∈ p} = {f ∈ C(X) : p ∈ cl βXZ(f)}
is the maximal ideal corresponding to p. When p ∈ X, then Mp = Mp and the
point p can be viewed as the principal zero-set ultrafilter generated by p. And
this correspondence is a continuous dense embedding of X into βX. Since we
are interested in considering the set of maximal ideals of C(X) containing a given
f ∈ C(X), we shall, as is customary, let V (f) = {M ∈ Max(C(X)) : f ∈ M}.
Observe then that V (f) ∩X = Z(f).

Remark 2.2. For those interested in understanding rings of the form C(X,A) for
some proper subring A of R, say A = Z, let us dispel with any hopes that this
might be interesting. Observe that for each x ∈ X, the ideal Mx = {f ∈ C(X,A) :
f(x) = 0} is a prime ideal since C(X,A)/Mx = A. If A is not a field, then let N
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be a maximal ideal of A and choose a nonzero a ∈ N . For each x ∈ X, there is a
maximal ideal Nx of C(X,A) containing Mx such that Nx/Mx = N . The constant
function a ∈ C(X,A) is regular and belongs to each Nx and therefore if X is infinite,
then C(X,A) is not h-local. It follows that either X is finite and A is h-local or
else, A is a field in which case the theory follows the situation of C(X) with some
minor modifications.

The aim here is investigate when C(X) is an h-local ring. Now, as is typical, if
the only regular elements of a ring R are the invertible ones, then trivially R is an
h-local ring. Such rings are often called classical (or total) since they equal their
classical ring of quotients. This leads us to recall the following class of spaces.

Definition 2.3. A space X is said to be an almost P -space if every zero-set
has non-empty interior. This is equivalent to saying that X has no proper dense
cozero-sets.

Recall X is an almost P -space if and only if C(X) is classical; see [5, 3.2]. Put
another way, X is an almost P -space if and only if for every regular f ∈ C(X),
Z(f) = ∅. It is now obvious that the condition that C(X) is h-local generalizes that
X is an almost P -space. We state this formally. (For the reader not fluent in the
language of rings of continuous functions, a space X is a P -space if the topology of
X is closed under countable intersections. Furthermore, X is a P -space if and only
if C(X) is a von Neumann regular ring.)

Proposition 2.4. If X is an almost P -space, then C(X) is an h-local ring.

We observe that the space X is an almost P -space if and only if the interior of
any non-empty Gδ-set is non-empty. (Recall that a Gδ-set in a space is a countable
intersection of open sets.) A classic example of an almost P -space is the one-point
compactification of an uncountable discrete space. We shall denote this space by
αD. When D is a countable discrete set we instead shall write αN; this space is not
an almost P -space as it is metrizable and metrizable almost P -spaces are discrete.

Another classic example of an almost P -space is βNrN. In fact, any space of the
form βX rX for some locally compact, realcompact space X is an almost P -space.
One can find these results and other information concerning almost P -spaces in [12].

It is common in the study of rings of continuous functions to generalize a notion
about spaces to a notion about points. This shall be useful here. In this vein, a
point p ∈ X is called an almost P -point if whenever f ∈ C(X) and p ∈ Z(f), then
int Z(f) 6= ∅. Obviously, an isolated point is an almost P -point. The point α ∈ αD
is a non-isolated almost P -point. A space X is an almost P -space if and only if
every point of X is an almost P -point.

One might think that the concept of an almost P -space would characterize when
C(X) is h-local. However, a quick check shows that if X = αN, the one-point
compactification of the naturals, then C(X) is h-local since the regular elements are
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the ones which either vanish nowhere (i.e. invertible) or only vanish at α. The latter
type belong to only one maximal ideal, Mα. This leads one to see that if there are at
most a finite number of points which are not almost P -points, then C(X) is h-local.
The question then becomes does having only a finite number of non-almost P -points
characterize h-local C(X). Our next example demonstrates that the answer is still
no.

Example 2.5. Let I be an uncountable indexing set. For each i ∈ I, let Xi be
a distinct copy of the one-point compactification of the naturals, with unique non-
isolated point αi. Let Y be the disjoint union of the copies of the Xi. The space Y
is locally compact and therefore we may consider the space X which is the one-point
compactification of Y ; X = αY . We claim that C(X) is h-local even though there
are uncountably many points which are not almost P -points.

There are two interesting features here. First, we claim that the point α is an
almost P -point of X. Let f ∈ C(X) and suppose that f vanishes at α. Choose a
natural number n and let ni be its copy in Xi. Let T = {ni}i∈I ∪ {α}. Since X is
compact it follows that T is a copy of αD, an almost P -space since I is uncountable.
Then, by considering the restriction of f to T , it follows that f must vanish at some
ni, an isolated point. Therefore, Z(f) has non-empty interior.

Next, if f ∈ C(X) is regular, then as we just pointed out, f cannot vanish at α.
Thus, Z(f) ⊆ {αi : i ∈ I}. Now, if Z(f) were infinite then it would be forced to
contain α since α is in the closure of any infinite collection of the αi. Consequently,
Z(f) is finite.

Remark 2.6. Not surprisingly, if we were to instead use a countable indexing set I,
then the space X is not h-local. Since, in this case, the set {αi} ∪ {α} is a nowhere
dense zero-set of X.

In the literature there has been a need to study subsets of a space which behave
like almost P -points.

Definition 2.7. First, we recall [9, Definition 3.9] that a closed subset S of X is
called an almost P -set if whenever S ⊆ Z, for a zero-set Z of X, then S ⊆ cl int Z.

We have found that this notion of an almost P -set is not exactly what we need
for our purposes. Therefore, we define the following related concept.

Definition 2.8. We shall call a closed set S with the property that any zero-set
containing S has non-empty interior an ap-set.

Clearly, any almost P -set is an ap-set. Here is a method to construct ap-sets
which are not almost P -sets, whence the notion of almost P -set is stronger than
that of an ap-set. Take a space X that is not an almost P -space but contains an
almost P -point, say p ∈ X. Let Z be a nonempty nowhere dense zero-set of X and
set S = Z ∪ {p}. Any zero-set containing S will have non-empty interior. Since
p /∈ Z, there is some zero-set Z1 containing p and disjoint from Z. The zero-set
Z2 = Z1 ∪ Z contains S, yet does not satisfy S ⊆ cl int Z2.

Many authors have used the existence of almost P -sets in certain spaces to further
their work. We have not systematically gone through the literature to see if their
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results hold more generally for ap-sets though we do recognize that it is possible.
We did find that [9, Proposition 3.10] holds for ap-sets. What is for sure is that the
notion of an ap-set is of use to us in characterizing h-local spaces.

Theorem 2.9. Let X be a Tychonoff space. The following statements are equivalent.
1. C(X) is h-local.
2. Every infinite closed subset of X is an ap-set.
3. Every closed subset of X which is not an ap-set is finite.
4. For every regular f ∈ C(X), Z(f) is finite.
5. X has no infinite nowhere dense zero-sets.

Proof. 1. implies 2. Let S be an infinite closed subset of X and suppose that
S ⊆ Z(f) for some f ∈ C(X). Since Z(f) is infinite, then f is not regular, i.e.
int Z(f) 6= ∅. Thus, S is an ap-set.

2. is clearly equivalent to 3.
2. implies 4. Let f ∈ C(X) be regular. Then Z(f) cannot be infinite since then

it would be an ap-set, which it clearly is not.
4. implies 1. Let f ∈ C(X) be regular and so by hypothesis Z(f) is finite. It

follows that for all p ∈ βX rX, Z(f) /∈ p, whence V (f) = Z(f). Therefore, C(X)
is h-local.

That 4. and 5. are equivalent is obvious. �

Definition 2.10. For lack of a better term, it will be convenient to call a space X
h-local if C(X) is h-local.

Corollary 2.11. If X is h-local, then every non-almost P -point of X is a Gδ-point.

Proof. Suppose X is h-local and that x ∈ X is not an almost P -point. Then there is
some nowhere dense zero-set of X, say Z(f), containing x. But then f is regular and
hence Z(f) is finite. Using the Tychonoff property one can construct an f ′ ∈ C(X)
such that Z(f ′) = {x}. Since zero-sets are Gδ-sets the statement follows. �

Example 2.12. Observe that the space X in Example 2.5 is an h-local space as
every infinite closed set is ap-set. However, note that not every infinite closed set is
an almost P -set. For example, take any countable subset I ′ = {in}n∈N ⊆ I and let
S = {αin} ∪ {α}; S is closed. It is straightforward to check that Z, the union of S
together

⋃
i∈IrI′ Xi, is a zero-set. Furthermore, for each i ∈ I ′, αi /∈ cl int Z. This

demonstrates the condition 2. of Theorem 2.9 cannot be strengthened to almost
P -sets.

We let C∗(X) denote the subring of C(X) consisting of bounded continuous
functions on X. The map that takes an f ∈ C(βX) to the restriction of f to X, is
a ring homomorphism from C(βX) into C∗(X). Since X is C∗-embedded in βX, it
follows that the homomorphism is an isomorphism. We address when C∗(X) is an
h-local ring, i.e. when βX is h-local.
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Theorem 2.13. Let X be a Tychonoff space. The ring C∗(X) is h-local if and only
if X is pseudo-compact and C(X) is h-local. In other words, βX is h-local if and
only if X is pseudo-compact and h-local.

Proof. Clearly, the sufficiency is true. So suppose that C∗(X) is h-local and let
f ∈ C(X)+ be an unbounded function; without loss of generality f ≥ 1. Since
C∗(X) and C(βX) are isomorphic, the latter is also h-local, by hypothesis. Let
g = f−1 which belongs to C∗(X) and let gβ be the extension to all of βX. Now,
∅ 6= Z(gβ) ⊆ βX rX, and hence nowhere dense. Since C∗(βX) is h-local it follows
that Z(gβ) is finite contradicting [7, Theorem 9.5]. Consequently, X is pseudo-
compact. �

Example 2.14. Theorem 2.13 is mirroring Levy’s result about almost P -spaces
[12, Proposition 2.1] which states that βX is an almost P -space if and only if X is
a pseudo-compact almost P -space. Levy also pointed out that an open subset of an
almost P -space is again an almost P -space, and the same is true for dense subsets.
These two facts cannot be generalized to h-local spaces as witnessed by Example
2.5. Notice that Y , the disjoint union of the uncountable collection of copies of
the one-point compactification of N is a dense open subset of the h-local (compact)
space X = αY , while Y is not h-local. To see this, observe that the infinite set
{αi : i ∈ I} is not an almost P -set of Y . Obviously, clopen subsets of h-local spaces
are again h-local.

Proposition 2.15. Every dense cozero-set of an h-local space is again h-local.

Proof. Let X be an h-local space and Y a dense cozero-set of X. Suppose f ∈ C(Y )
is a regular element. Recall that cozero-sets are z-embedded. Thus, there is a zero-
set of X, say Z, such that Z ∩ Y = Z(f). Notice that Z r Z(f) ⊆ X r Y and
therefore, Z must be nowhere dense, and hence finite. It follows that Z(f) is also
finite. �

Proposition 2.16. Suppose X has the property that every dense open subset of X
is a cozero-set. Then the following statements are equivalent.

1. X is h-local.
2. X has only a finite number of non-almost P -points.
3. X is almost discrete.

Proof. Recall thatX is almost discrete if it has only a finite number of non-isolated
points.

Clearly, 3. implies 2., and 2. implies 1.

1. implies 3. Suppose X is an h-local space. First of all, the hypothesis implies
that every non-isolated point is a Gδ-point, and hence not an almost P -point. Now,
in any infinite (Hausdorff) space, one can construct a discrete subset. Therefore, if
the set of non-almost P -points is infinite, then there is a discrete collection of such
points, say S. Then cl S is nowhere dense. In our case, cl S is an infinite nowhere
dense zero-set, a contradiction. Thus, there are only a finite number of non-isolated
points. �
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Example 2.17. As we have seen, the metrizable space αN is an h-local space. Since
a metric space, and more generally, a perfectly normal space satisfies the hypothesis
of Proposition 2.16, it follows that a perfectly normal space is an h-local space if
and only if it is almost discrete. Interestingly, this includes all countable spaces.

Definition 2.18. Recall from [1] that a function f ∈ C(X) is said to be nowhere
constant if for every nonempty open subset of X, say O, there are x, y ∈ O such
that f(x) 6= f(y). This is equivalent to saying that for each r ∈ R, f−1({r}) is
nowhere dense.

If X has a nowhere constant function, then X is does not possess any almost P -
points. For more information on nowhere constant functions the reader is referred
to [2].

Proposition 2.19. Suppose X is h-local. Then no f ∈ C(X) is nowhere constant.

Proof. Suppose f : X −→ R is nowhere constant. For any r ∈ f(X), the function
f − r is also nowhere constant. So we may assume that Z(f) 6= ∅. Since for any
s ∈ R both f−1(s) and f−1(−s) are nowhere dense it follows that |f | is also nowhere
constant. So, we may assume further that f ≥ 0. There must exist a decreasing
sequence, say {rn}, of positive real numbers belonging to f(X) converging to 0,
(otherwise, Z(f) is clopen). Let h ∈ C(R) such that Z(h) = {0} ∪ {ri}. Set r0 = 0
and consider h ◦ f .

Z(h ◦ f) =
⋃
n∈N

Z(f − rn).

Set Z = Z(h ◦ f) and observe that for each n 6= 0 there is an open subset of
X, say On, containing Z(f − rn) and so that On ∩ Z(f − rm) = ∅ for all m 6= n.
We claim that Z is nowhere dense. If not, then there is some non-empty open set,
say O, such that O ⊆ Z. If there is some z ∈ O ∩ Z(f − rn) (with n 6= 0) then
∅ 6= O ∩On ⊆ Z(f − rn), contradicting that Z(f − rn) is nowhere dense. Therefore,
O ⊆ Z(f − r0) = Z(f). But this contradicts that Z(f) is nowhere dense.

Finally, since Z is clearly an infinite set, we gather that X is not h-local.
�

Corollary 2.20. If X is dense in itself and an h-local space, then by [1, Theorem
2], X cannot be separable.

Our aim is to determine whether there exists an h-local space with no almost
P -points. We do not have a complete answer but our next result rules out a big
class of spaces.

Theorem 2.21. Suppose X is not pseudo-compact. If X is h-local, then X has an
almost P -point.

Proof. Suppose X is an h-local space which is not pseudo-compact. If X contains
no almost P -point, then every point of X is a non-isolated Gδ point. Since X
is not pseudo-compact there is some C-embedded copy of N, say {xn} ⊆ X is
C-embedded (see [7, Corollary 1.2]). Then there is some f ∈ C(X) such that
f(xn) = n. Considering f−1((n − 1

3 , n + 1
3)) it follows that there is a sequence of
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pairwise disjoint zero-sets, say {Zn}, such that xn ∈ Cn ⊆ Zn where Cn = coz(gn)
for gn ∈ C(X).

We can assume that 0 ≤ gn ≤ 1 and that gn(xn) = 1. Now since each xn is a
Gδ point we can find tn ∈ C(X) such that 0 ≤ tn ≤ 1 and t−1n (1) = xn. Then the
function hn = gn · tn has the property that 0 ≤ hn ≤ 1, x ∈ coz(hn) ⊆ Zn and
hn(y) = 1 implies y = xn.

Then the infinite sum of the hn, call it h, is continuous and Z(h − 1) = {xn}
which means that {xn} is an infinite nowhere dense zero-set, a contradiction. �

Our next aim to rule out another significant class of spaces: compact spaces, see
Corollary 2.24. We get a more general result.

Theorem 2.22. Suppose X is normal and each non-almost P -point has countable
character. Then X is h-local if and only if there is no countably infinite closed
set consisting of non-almost P -points. Moreover, a normal first countable space is
h-local if and only if it is almost discrete.

Proof. Suppose there is a countably infinite closed set consisting of non-almost P -
points, say T . Choose a discrete subset D of T . Notice that D is nowhere dense
and thus so is the countable set cl D. If D = cl D, then D is a closed discrete set
and hence a Gδ-set. Otherwise, choose x ∈ cl DrD and then select a a sequence in
D, say {dn}, such that dn → x. Then {x} ∪ {dn} is also a closed Gδ-set. In either
case, there is an infinite nowhere dense closed Gδ-set. Since X is normal this set is
a zero-set, whence X is not h-local.

Conversely, if X is not h-local, then there is an infinite nowhere dense zero-set, say
Z. Since each point of Z is not an almost P -point, each point of Z is of countable
character. Select a discrete subset of Z, and either it is closed or we can choose
a convergent sequence in Z. Either way, there is an infinite closed sequence in Z
consisting of non-almost P -points.

Finally, suppose that X is a normal first countable space that is also h-local.
Notice that every point in a first countable space is a Gδ-point and therefore an
almost P -point must be isolated. The collection of non-isolated points is a closed
subset of X and therefore we can find either a closed discrete set or a non-constant
sequence that converges in it. Either way we obtain a countably infinite closed set
of non-almost P -points, contradicting the hypothesis.

�

Remark 2.23. Observe that the last statement of Theorem 2.22 does not hold
for Frechet-Urysohn spaces. Let Y be a countable collection of copies of αD, and
then let X = αY , the one-point compactification of Y . Both X and Y are Frechet-
Urysohn spaces, and both are h-local spaces. Neither is almost discrete.

Corollary 2.24. Suppose X is compact. Then X is h-local if and only if there is
no countably infinite closed set consisting of non-isolated Gδ-points. Moreover, a
compact h-local space must contain an almost P -point.

Proof. In a compact space, the pseudo-character of a point equals the character of
said point. Therefore, the first statement follows from Theorem 2.22.
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If X is compact h-local and does not contain any almost P -points, then there is
certainly a convergent sequence in X, contradicting that X is h-local. �

Corollary 2.25. Suppose (X,≤) is a totally ordered space. Then X is h-local if and
only if there is no countably infinite closed set consisting of non-isolated Gδ-points.
Moreover, a totally ordered h-local space must contain an almost P -point.

Proof. Every totally ordered space is normal and so Theorem 2.22 applies. Further-
more, in a totally ordered space the pseudo-character of a point equals its character.
If p ∈ X is not an almost P -point, then it is a Gδ-point and hence has a count-
able base of neighborhoods. Thus, X must contain an almost P -point otherwise
there is a sequence of non-almost P -points converging to a non-almost P -point, a
contradiction. �

Remark 2.26. The proof in Corollary 2.25 works for perfect images of GO-spaces
since such spaces are normal and the pseudo-character equals the character, see [8].

We also point out that if X is a Suslin line, then X has no nowhere constant
function by [2, Theorem 5]. Since X is a totally ordered space with no almost P -
points, it is not h-local. Therefore, the class of h-local spaces is a proper subclass
of the class of spaces with no nowhere constant functions.

At this point we are left with the following question.

Question. Is there a pseudo-compact h-local space with no almost P -points?

If there is such a space X it cannot be compact. Furthermore, we know that βX
is a compact h-local space and so it must contain an almost P -point. Any such
point must live inside of βX rX. In fact, any point of βX rX must be an almost
P -point of βX. Otherwise, it would be a Gδ-point of βX contradicting the fact that
no point of βX rX is a Gδ-point.

In [4], the authors investigated almost P -spaces as a subclass of quasi F -spaces.
In particular, they show that a product of two spaces is an almost P -space if and
only if each space is an almost P -space. We now classify when a product is an
h-local space.

Theorem 2.27. The product space X × Y is h-local if and only if either both X
and Y are almost P -spaces or one of them is h-local while the other is finite.

Proof. Necessity. Suppose X × Y is h-local and let Z(f) be a nowhere dense zero-
set of X. Then S = Z(f) × Y is a zero-set of X × Y . If Z(f) × Y has non-empty
interior, say (x, y) ∈ int S, then there is an open set of the form O1 ×O2 such that
(x, y) ∈ O1×O2 ⊆ Z(f)× Y . It follows that x ∈ O1 ⊆ Z(f), which cannot happen.
Therefore, S is a nowhere dense zero-set of X × Y . By hypothesis, S is finite, and
therefore Z(f) is finite. Consequently, X is h-local. Similarly, Y is h-local.
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Suppose that one of X or Y is not an almost P -space, say X. Then there is some
non-isolated point of X, say p ∈ X, which is a Gδ-point. Let f ∈ C(X) satisfy
Z(f) = {p}. Define φ : X × Y by φ((x, y)) = f(x) and observe that φ ∈ C(X × Y )
and Z(φ) = {p} × Y . We claim that Z(φ) is nowhere dense, whence Y must be
finite.

Suppose (p, t) ∈ int Z(φ). Then there are open sets O1 ⊆ X and O2 ⊆ Y such
that

(p, t) ∈ O1 ×O2 ⊆ {p} × Y.
It follows that p is an isolated point, a contradiction. Therefore, Z(φ) is nowhere
dense.

Sufficiency. If both X and Y are almost P -spaces, then so is X × Y by [4,
Proposition 5.10]. If X is h-local and Y is finite, then X × Y is homeomorphic to a
finite sum of copies of X which is again h-local. �

Remark 2.28. In [3], the authors investigate what they call DC-spaces (short for
densely constant). The space X is a DC-space if for each f ∈ C(X) there exist
open sets {Ui : i ∈ I} which are pairwise disjoint, the union of which is dense in
X, and such that f is constant when restricted to each of the Ui. Any space with
a dense set of almost P -points is a DC-space. Therefore, not every DC-space is
h-local. Furthermore, a DC-space does not have any nowhere constant functions.

We do not know if an h-local space must be a DC-space.
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