WHEN C(X) IS AN *h*-LOCAL RING

PAPIYA BHATTACHARJEE¹, ALEXANDRA EPSTEIN², WARREN WM. MCGOVERN³, AND MATTHEW TOENISKOETTER⁴

ABSTRACT. An *h*-local domain is a domain for which each nonzero prime ideal is contained in a unique maximal ideal and each nonzero element has finite character. In [17], the author generalizes the notion to rings with zero-divisors by restricting the definition to regular ideals and elements. In this article, we give a characterization of when C(X) the ring of continuous real-valued functions on a space X is an *h*-local ring. We are left with more questions than answers.

1. INTRODUCTION

In the theory of integral domains, the concept of an h-local domain is well-known. Originally defined by Matlis [15], later Olberding [16] supplied a list of equivalent conditions for a domain to be an h-local domain. Interestingly, P. Jaffard [11], prior to Matlis, studied domains he called Dedekind type. In [6, Theorem 2.1.5], the authors show that a domain is h-local if and only if it is of Dedekind type. One of the main goals of a recent dissertation [17] was to generalize the concept of an h-local domain to the case of rings with zero-divisors. Our interest in this article is to characterize the h-local condition for rings of continuous functions.

Recall that an integral domain R is said to be an *h*-local domain if each nonzero prime ideal of R is contained in a unique maximal ideal and each nonzero element has finite character. As has become customary in generalizing to rings with zerodivisors the focus is on regular elements (i.e. non-zero-divisors). Throughout by **ring** we mean a (non-trivial) commutative ring with identity. An ideal is said to be **regular** if it contains a regular element.

Definition 1.1. Let R be a ring. We say R is h-local if each regular prime ideal of R is contained in a unique maximal ideal and each regular element is contained in at most finitely many maximal ideals of R.

Remark 1.2. In [14], the authors study h-local rings but their definition is a bit stronger in the sense that they do not restrict to regular prime ideals nor regular elements.

Our interest in h-local rings was spurred on by attendance in a seminar at Florida Atlantic University covering material in the dissertation by A. Omairi ([17]). We were interested in understanding what the h-local condition means in the context of rings of real-valued continuous functions.

We shall employ the following notation. For a ring R, Spec(R) denotes its space of prime ideals and Max(R) the subspace of maximal ideals.

2. When C(X) is *h*-local

Throughout, C(X) denotes the ring of of real-valued continuous functions defined on the topological space X. We assume throughout that X is a Tychonoff space, that is, completely regular and Hausdorff. Rings of the form C(X) are always *pm*rings, that is, every prime ideal is contained in a unique maximal ideal and so half of the definition of *h*-local is already satisfied. We state this formally.

Lemma 2.1. The ring C(X) is h-local if and only if every regular element of C(X) is contained in at most finitely many maximal ideals of X.

We assume knowledge of the ring C(X) and cite [7] as our main reference. In order to keep the material self-contained we recall that for $f \in C(X)$, the **zero-set** of f is the set

$$Z(f) = \{ x \in X : f(x) = 0 \}.$$

The set-theoretic complement of Z(f) is denoted by coz(f) and is called the **cozero-set** of f. A subset of X is called a zero-set (resp. cozero-set) if it has the form Z(f) (resp. coz(f)) for some $f \in C(X)$. It is known that a Hausdorff space is Tychonoff if and only if the set of cozero-sets forms a base for the open sets. All zero-sets are closed but not conversely. We let the operators int (\cdot) and cl (\cdot) denote the interior and closure of a subset of X.

Observe that the invertible and regular elements of C(X) can be characterized by their zero-sets. Namely, $f \in C(X)$ is invertible if and only if $Z(f) = \emptyset$, and $f \in C(X)$ is regular if and only if int $Z(f) = \emptyset$.

To each $x \in X$ there is a corresponding maximal ideal of C(X), namely

$$M_x = \{ f \in C(X) : f(x) = 0 \}.$$

One version of the Gelfand-Kolmogorov Theorem states that the space of maximal ideals of C(X) equipped with the hull-kernel (aka Zariski) topology, denoted Max(C(X)), is homeomorphic to the Čech-Stone compactification of X, denoted βX ; we view βX as the space of zero-set ultrafilters on X. Furthermore, the Gelfand-Kolmogorov Theorem ([7, Theorem 7.3]) states that for $p \in \beta X$,

$$M^{p} = \{ f \in C(X) : Z(f) \in p \} = \{ f \in C(X) : p \in cl_{\beta X} Z(f) \}$$

is the maximal ideal corresponding to p. When $p \in X$, then $M_p = M^p$ and the point p can be viewed as the principal zero-set ultrafilter generated by p. And this correspondence is a continuous dense embedding of X into βX . Since we are interested in considering the set of maximal ideals of C(X) containing a given $f \in C(X)$, we shall, as is customary, let $V(f) = \{M \in Max(C(X)) : f \in M\}$. Observe then that $V(f) \cap X = Z(f)$.

Remark 2.2. For those interested in understanding rings of the form $C(X, \mathbb{A})$ for some proper subring \mathbb{A} of \mathbb{R} , say $\mathbb{A} = \mathbb{Z}$, let us dispel with any hopes that this might be interesting. Observe that for each $x \in X$, the ideal $M_x = \{f \in C(X, \mathbb{A}) :$ $f(x) = 0\}$ is a prime ideal since $C(X, \mathbb{A})/M_x = \mathbb{A}$. If \mathbb{A} is not a field, then let N be a maximal ideal of \mathbb{A} and choose a nonzero $a \in N$. For each $x \in X$, there is a maximal ideal N_x of $C(X, \mathbb{A})$ containing M_x such that $N_x/M_x = N$. The constant function $\mathbf{a} \in C(X, \mathbb{A})$ is regular and belongs to each N_x and therefore if X is infinite, then $C(X, \mathbb{A})$ is not *h*-local. It follows that either X is finite and \mathbb{A} is *h*-local or else, \mathbb{A} is a field in which case the theory follows the situation of C(X) with some minor modifications.

The aim here is investigate when C(X) is an *h*-local ring. Now, as is typical, if the only regular elements of a ring *R* are the invertible ones, then trivially *R* is an *h*-local ring. Such rings are often called *classical* (or *total*) since they equal their classical ring of quotients. This leads us to recall the following class of spaces.

Definition 2.3. A space X is said to be an **almost** P-space if every zero-set has non-empty interior. This is equivalent to saying that X has no proper dense cozero-sets.

Recall X is an almost P-space if and only if C(X) is classical; see [5, 3.2]. Put another way, X is an almost P-space if and only if for every regular $f \in C(X)$, $Z(f) = \emptyset$. It is now obvious that the condition that C(X) is h-local generalizes that X is an almost P-space. We state this formally. (For the reader not fluent in the language of rings of continuous functions, a space X is a P-space if the topology of X is closed under countable intersections. Furthermore, X is a P-space if and only if C(X) is a von Neumann regular ring.)

Proposition 2.4. If X is an almost P-space, then C(X) is an h-local ring.

We observe that the space X is an almost P-space if and only if the interior of any non-empty G_{δ} -set is non-empty. (Recall that a G_{δ} -set in a space is a countable intersection of open sets.) A classic example of an almost P-space is the one-point compactification of an uncountable discrete space. We shall denote this space by αD . When D is a countable discrete set we instead shall write $\alpha \mathbb{N}$; this space is not an almost P-space as it is metrizable and metrizable almost P-spaces are discrete.

Another classic example of an almost P-space is $\beta \mathbb{N} \setminus \mathbb{N}$. In fact, any space of the form $\beta X \setminus X$ for some locally compact, realcompact space X is an almost P-space. One can find these results and other information concerning almost P-spaces in [12].

It is common in the study of rings of continuous functions to generalize a notion about spaces to a notion about points. This shall be useful here. In this vein, a point $p \in X$ is called an *almost* P-*point* if whenever $f \in C(X)$ and $p \in Z(f)$, then int $Z(f) \neq \emptyset$. Obviously, an isolated point is an almost P-point. The point $\alpha \in \alpha D$ is a non-isolated almost P-point. A space X is an almost P-space if and only if every point of X is an almost P-point.

One might think that the concept of an almost P-space would characterize when C(X) is *h*-local. However, a quick check shows that if $X = \alpha \mathbb{N}$, the one-point compactification of the naturals, then C(X) is *h*-local since the regular elements are

the ones which either vanish nowhere (i.e. invertible) or only vanish at α . The latter type belong to only one maximal ideal, M_{α} . This leads one to see that if there are at most a finite number of points which are not almost *P*-points, then C(X) is *h*-local. The question then becomes does having only a finite number of non-almost *P*-points characterize *h*-local C(X). Our next example demonstrates that the answer is still no.

Example 2.5. Let I be an uncountable indexing set. For each $i \in I$, let X_i be a distinct copy of the one-point compactification of the naturals, with unique nonisolated point α_i . Let Y be the disjoint union of the copies of the X_i . The space Y is locally compact and therefore we may consider the space X which is the one-point compactification of Y; $X = \alpha Y$. We claim that C(X) is h-local even though there are uncountably many points which are not almost P-points.

There are two interesting features here. First, we claim that the point α is an almost *P*-point of *X*. Let $f \in C(X)$ and suppose that *f* vanishes at α . Choose a natural number *n* and let n_i be its copy in X_i . Let $T = \{n_i\}_{i \in I} \cup \{\alpha\}$. Since *X* is compact it follows that *T* is a copy of αD , an almost *P*-space since *I* is uncountable. Then, by considering the restriction of *f* to *T*, it follows that *f* must vanish at some n_i , an isolated point. Therefore, Z(f) has non-empty interior.

Next, if $f \in C(X)$ is regular, then as we just pointed out, f cannot vanish at α . Thus, $Z(f) \subseteq \{\alpha_i : i \in I\}$. Now, if Z(f) were infinite then it would be forced to contain α since α is in the closure of any infinite collection of the α_i . Consequently, Z(f) is finite.

Remark 2.6. Not surprisingly, if we were to instead use a countable indexing set I, then the space X is not h-local. Since, in this case, the set $\{\alpha_i\} \cup \{\alpha\}$ is a nowhere dense zero-set of X.

In the literature there has been a need to study subsets of a space which behave like almost P-points.

Definition 2.7. First, we recall [9, Definition 3.9] that a closed subset S of X is called an **almost** P-set if whenever $S \subseteq Z$, for a zero-set Z of X, then $S \subseteq$ cl int Z.

We have found that this notion of an almost P-set is not exactly what we need for our purposes. Therefore, we define the following related concept.

Definition 2.8. We shall call a closed set S with the property that any zero-set containing S has non-empty interior an ap-set.

Clearly, any almost P-set is an ap-set. Here is a method to construct ap-sets which are not almost P-sets, whence the notion of almost P-set is stronger than that of an ap-set. Take a space X that is not an almost P-space but contains an almost P-point, say $p \in X$. Let Z be a nonempty nowhere dense zero-set of X and set $S = Z \cup \{p\}$. Any zero-set containing S will have non-empty interior. Since $p \notin Z$, there is some zero-set Z_1 containing p and disjoint from Z. The zero-set $Z_2 = Z_1 \cup Z$ contains S, yet does not satisfy $S \subseteq$ cl int Z_2 .

Many authors have used the existence of almost P-sets in certain spaces to further their work. We have not systematically gone through the literature to see if their results hold more generally for ap-sets though we do recognize that it is possible. We did find that [9, Proposition 3.10] holds for ap-sets. What is for sure is that the notion of an ap-set is of use to us in characterizing h-local spaces.

Theorem 2.9. Let X be a Tychonoff space. The following statements are equivalent.

- 1. C(X) is h-local.
- 2. Every infinite closed subset of X is an ap-set.
- 3. Every closed subset of X which is not an ap-set is finite.
- 4. For every regular $f \in C(X)$, Z(f) is finite.
- 5. X has no infinite nowhere dense zero-sets.

Proof. 1. implies 2. Let S be an infinite closed subset of X and suppose that $S \subseteq Z(f)$ for some $f \in C(X)$. Since Z(f) is infinite, then f is not regular, i.e. int $Z(f) \neq \emptyset$. Thus, S is an *ap*-set.

2. is clearly equivalent to 3.

2. implies 4. Let $f \in C(X)$ be regular. Then Z(f) cannot be infinite since then it would be an *ap*-set, which it clearly is not.

4. implies 1. Let $f \in C(X)$ be regular and so by hypothesis Z(f) is finite. It follows that for all $p \in \beta X \setminus X$, $Z(f) \notin p$, whence V(f) = Z(f). Therefore, C(X) is *h*-local.

That 4. and 5. are equivalent is obvious.

Definition 2.10. For lack of a better term, it will be convenient to call a space X *h*-local if C(X) is *h*-local.

Corollary 2.11. If X is h-local, then every non-almost P-point of X is a G_{δ} -point.

Proof. Suppose X is h-local and that $x \in X$ is not an almost P-point. Then there is some nowhere dense zero-set of X, say Z(f), containing x. But then f is regular and hence Z(f) is finite. Using the Tychonoff property one can construct an $f' \in C(X)$ such that $Z(f') = \{x\}$. Since zero-sets are G_{δ} -sets the statement follows.

Example 2.12. Observe that the space X in Example 2.5 is an h-local space as every infinite closed set is *ap*-set. However, note that not every infinite closed set is an almost P-set. For example, take any countable subset $I' = \{i_n\}_{n \in \mathbb{N}} \subseteq I$ and let $S = \{\alpha_{i_n}\} \cup \{\alpha\}; S$ is closed. It is straightforward to check that Z, the union of S together $\bigcup_{i \in I \setminus I'} X_i$, is a zero-set. Furthermore, for each $i \in I'$, $\alpha_i \notin \text{cl int } Z$. This demonstrates the condition 2. of Theorem 2.9 cannot be strengthened to almost P-sets.

We let $C^*(X)$ denote the subring of C(X) consisting of bounded continuous functions on X. The map that takes an $f \in C(\beta X)$ to the restriction of f to X, is a ring homomorphism from $C(\beta X)$ into $C^*(X)$. Since X is C^* -embedded in βX , it follows that the homomorphism is an isomorphism. We address when $C^*(X)$ is an *h*-local ring, i.e. when βX is *h*-local. **Theorem 2.13.** Let X be a Tychonoff space. The ring $C^*(X)$ is h-local if and only if X is pseudo-compact and C(X) is h-local. In other words, βX is h-local if and only if X is pseudo-compact and h-local.

Proof. Clearly, the sufficiency is true. So suppose that $C^*(X)$ is *h*-local and let $f \in C(X)^+$ be an unbounded function; without loss of generality $f \geq 1$. Since $C^*(X)$ and $C(\beta X)$ are isomorphic, the latter is also *h*-local, by hypothesis. Let $g = f^{-1}$ which belongs to $C^*(X)$ and let g^β be the extension to all of βX . Now, $\emptyset \neq Z(g^\beta) \subseteq \beta X \smallsetminus X$, and hence nowhere dense. Since $C^*(\beta X)$ is *h*-local it follows that $Z(g^\beta)$ is finite contradicting [7, Theorem 9.5]. Consequently, X is pseudo-compact.

Example 2.14. Theorem 2.13 is mirroring Levy's result about almost P-spaces [12, Proposition 2.1] which states that βX is an almost P-space if and only if X is a pseudo-compact almost P-space. Levy also pointed out that an open subset of an almost P-space is again an almost P-space, and the same is true for dense subsets. These two facts cannot be generalized to h-local spaces as witnessed by Example 2.5. Notice that Y, the disjoint union of the uncountable collection of copies of the one-point compactification of \mathbb{N} is a dense open subset of the h-local (compact) space $X = \alpha Y$, while Y is not h-local. To see this, observe that the infinite set $\{\alpha_i : i \in I\}$ is not an almost P-set of Y. Obviously, clopen subsets of h-local spaces are again h-local.

Proposition 2.15. Every dense cozero-set of an h-local space is again h-local.

Proof. Let X be an h-local space and Y a dense cozero-set of X. Suppose $f \in C(Y)$ is a regular element. Recall that cozero-sets are z-embedded. Thus, there is a zero-set of X, say Z, such that $Z \cap Y = Z(f)$. Notice that $Z \setminus Z(f) \subseteq X \setminus Y$ and therefore, Z must be nowhere dense, and hence finite. It follows that Z(f) is also finite.

Proposition 2.16. Suppose X has the property that every dense open subset of X is a cozero-set. Then the following statements are equivalent.

- 1. X is h-local.
- 2. X has only a finite number of non-almost P-points.
- 3. X is almost discrete.

Proof. Recall that X is **almost discrete** if it has only a finite number of non-isolated points.

Clearly, 3. implies 2., and 2. implies 1.

1. implies 3. Suppose X is an h-local space. First of all, the hypothesis implies that every non-isolated point is a G_{δ} -point, and hence not an almost P-point. Now, in any infinite (Hausdorff) space, one can construct a discrete subset. Therefore, if the set of non-almost P-points is infinite, then there is a discrete collection of such points, say S. Then cl S is nowhere dense. In our case, cl S is an infinite nowhere dense zero-set, a contradiction. Thus, there are only a finite number of non-isolated points.

Example 2.17. As we have seen, the metrizable space $\alpha \mathbb{N}$ is an *h*-local space. Since a metric space, and more generally, a perfectly normal space satisfies the hypothesis of Proposition 2.16, it follows that a perfectly normal space is an *h*-local space if and only if it is almost discrete. Interestingly, this includes all countable spaces.

Definition 2.18. Recall from [1] that a function $f \in C(X)$ is said to be **nowhere** constant if for every nonempty open subset of X, say O, there are $x, y \in O$ such that $f(x) \neq f(y)$. This is equivalent to saying that for each $r \in \mathbb{R}$, $f^{-1}(\{r\})$ is nowhere dense.

If X has a nowhere constant function, then X is does not possess any almost P-points. For more information on nowhere constant functions the reader is referred to [2].

Proposition 2.19. Suppose X is h-local. Then no $f \in C(X)$ is nowhere constant.

Proof. Suppose $f: X \longrightarrow \mathbb{R}$ is nowhere constant. For any $r \in f(X)$, the function f - r is also nowhere constant. So we may assume that $Z(f) \neq \emptyset$. Since for any $s \in \mathbb{R}$ both $f^{-1}(s)$ and $f^{-1}(-s)$ are nowhere dense it follows that |f| is also nowhere constant. So, we may assume further that $f \ge 0$. There must exist a decreasing sequence, say $\{r_n\}$, of positive real numbers belonging to f(X) converging to 0, (otherwise, Z(f) is clopen). Let $h \in C(\mathbb{R})$ such that $Z(h) = \{0\} \cup \{r_i\}$. Set $r_0 = 0$ and consider $h \circ f$.

$$Z(h \circ f) = \bigcup_{n \in \mathbb{N}} Z(f - r_n)$$

Set $Z = Z(h \circ f)$ and observe that for each $n \neq 0$ there is an open subset of X, say O_n , containing $Z(f - r_n)$ and so that $O_n \cap Z(f - r_m) = \emptyset$ for all $m \neq n$. We claim that Z is nowhere dense. If not, then there is some non-empty open set, say O, such that $O \subseteq Z$. If there is some $z \in O \cap Z(f - r_n)$ (with $n \neq 0$) then $\emptyset \neq O \cap O_n \subseteq Z(f - r_n)$, contradicting that $Z(f - r_n)$ is nowhere dense. Therefore, $O \subseteq Z(f - r_0) = Z(f)$. But this contradicts that Z(f) is nowhere dense.

Finally, since Z is clearly an infinite set, we gather that X is not h-local.

Corollary 2.20. If X is dense in itself and an h-local space, then by [1, Theorem 2], X cannot be separable.

Our aim is to determine whether there exists an h-local space with no almost P-points. We do not have a complete answer but our next result rules out a big class of spaces.

Theorem 2.21. Suppose X is not pseudo-compact. If X is h-local, then X has an almost P-point.

Proof. Suppose X is an *h*-local space which is not pseudo-compact. If X contains no almost *P*-point, then every point of X is a non-isolated G_{δ} point. Since X is not pseudo-compact there is some *C*-embedded copy of \mathbb{N} , say $\{x_n\} \subseteq X$ is *C*-embedded (see [7, Corollary 1.2]). Then there is some $f \in C(X)$ such that $f(x_n) = n$. Considering $f^{-1}((n - \frac{1}{3}, n + \frac{1}{3}))$ it follows that there is a sequence of pairwise disjoint zero-sets, say $\{Z_n\}$, such that $x_n \in C_n \subseteq Z_n$ where $C_n = coz(g_n)$ for $g_n \in C(X)$.

We can assume that $0 \leq g_n \leq 1$ and that $g_n(x_n) = 1$. Now since each x_n is a G_{δ} point we can find $t_n \in C(X)$ such that $0 \leq t_n \leq 1$ and $t_n^{-1}(1) = x_n$. Then the function $h_n = g_n \cdot t_n$ has the property that $0 \leq h_n \leq 1$, $x \in \operatorname{coz}(h_n) \subseteq Z_n$ and $h_n(y) = 1$ implies $y = x_n$.

Then the infinite sum of the h_n , call it h, is continuous and $Z(h-1) = \{x_n\}$ which means that $\{x_n\}$ is an infinite nowhere dense zero-set, a contradiction.

Our next aim to rule out another significant class of spaces: compact spaces, see Corollary 2.24. We get a more general result.

Theorem 2.22. Suppose X is normal and each non-almost P-point has countable character. Then X is h-local if and only if there is no countably infinite closed set consisting of non-almost P-points. Moreover, a normal first countable space is h-local if and only if it is almost discrete.

Proof. Suppose there is a countably infinite closed set consisting of non-almost P-points, say T. Choose a discrete subset D of T. Notice that D is nowhere dense and thus so is the countable set cl D. If D = cl D, then D is a closed discrete set and hence a G_{δ} -set. Otherwise, choose $x \in \text{cl } D \setminus D$ and then select a sequence in D, say $\{d_n\}$, such that $d_n \to x$. Then $\{x\} \cup \{d_n\}$ is also a closed G_{δ} -set. In either case, there is an infinite nowhere dense closed G_{δ} -set. Since X is normal this set is a zero-set, whence X is not h-local.

Conversely, if X is not h-local, then there is an infinite nowhere dense zero-set, say Z. Since each point of Z is not an almost P-point, each point of Z is of countable character. Select a discrete subset of Z, and either it is closed or we can choose a convergent sequence in Z. Either way, there is an infinite closed sequence in Z consisting of non-almost P-points.

Finally, suppose that X is a normal first countable space that is also h-local. Notice that every point in a first countable space is a G_{δ} -point and therefore an almost P-point must be isolated. The collection of non-isolated points is a closed subset of X and therefore we can find either a closed discrete set or a non-constant sequence that converges in it. Either way we obtain a countably infinite closed set of non-almost P-points, contradicting the hypothesis.

Remark 2.23. Observe that the last statement of Theorem 2.22 does not hold for Frechet-Urysohn spaces. Let Y be a countable collection of copies of αD , and then let $X = \alpha Y$, the one-point compactification of Y. Both X and Y are Frechet-Urysohn spaces, and both are *h*-local spaces. Neither is almost discrete.

Corollary 2.24. Suppose X is compact. Then X is h-local if and only if there is no countably infinite closed set consisting of non-isolated G_{δ} -points. Moreover, a compact h-local space must contain an almost P-point.

Proof. In a compact space, the pseudo-character of a point equals the character of said point. Therefore, the first statement follows from Theorem 2.22.

If X is compact h-local and does not contain any almost P-points, then there is certainly a convergent sequence in X, contradicting that X is h-local. \Box

Corollary 2.25. Suppose (X, \leq) is a totally ordered space. Then X is h-local if and only if there is no countably infinite closed set consisting of non-isolated G_{δ} -points. Moreover, a totally ordered h-local space must contain an almost P-point.

Proof. Every totally ordered space is normal and so Theorem 2.22 applies. Furthermore, in a totally ordered space the pseudo-character of a point equals its character. If $p \in X$ is not an almost P-point, then it is a G_{δ} -point and hence has a countable base of neighborhoods. Thus, X must contain an almost P-point otherwise there is a sequence of non-almost P-points converging to a non-almost P-point, a contradiction.

Remark 2.26. The proof in Corollary 2.25 works for perfect images of GO-spaces since such spaces are normal and the pseudo-character equals the character, see [8].

We also point out that if X is a Suslin line, then X has no nowhere constant function by [2, Theorem 5]. Since X is a totally ordered space with no almost Ppoints, it is not *h*-local. Therefore, the class of *h*-local spaces is a proper subclass of the class of spaces with no nowhere constant functions.

At this point we are left with the following question.

Question. Is there a pseudo-compact *h*-local space with no almost *P*-points?

If there is such a space X it cannot be compact. Furthermore, we know that βX is a compact *h*-local space and so it must contain an almost *P*-point. Any such point must live inside of $\beta X \setminus X$. In fact, any point of $\beta X \setminus X$ must be an almost *P*-point of βX . Otherwise, it would be a G_{δ} -point of βX contradicting the fact that no point of $\beta X \setminus X$ is a G_{δ} -point.

In [4], the authors investigated almost P-spaces as a subclass of quasi F-spaces. In particular, they show that a product of two spaces is an almost P-space if and only if each space is an almost P-space. We now classify when a product is an h-local space.

Theorem 2.27. The product space $X \times Y$ is h-local if and only if either both X and Y are almost P-spaces or one of them is h-local while the other is finite.

Proof. Necessity. Suppose $X \times Y$ is *h*-local and let Z(f) be a nowhere dense zeroset of X. Then $S = Z(f) \times Y$ is a zero-set of $X \times Y$. If $Z(f) \times Y$ has non-empty interior, say $(x, y) \in \text{int } S$, then there is an open set of the form $O_1 \times O_2$ such that $(x, y) \in O_1 \times O_2 \subseteq Z(f) \times Y$. It follows that $x \in O_1 \subseteq Z(f)$, which cannot happen. Therefore, S is a nowhere dense zero-set of $X \times Y$. By hypothesis, S is finite, and therefore Z(f) is finite. Consequently, X is *h*-local. Similarly, Y is *h*-local. Suppose that one of X or Y is not an almost P-space, say X. Then there is some non-isolated point of X, say $p \in X$, which is a G_{δ} -point. Let $f \in C(X)$ satisfy $Z(f) = \{p\}$. Define $\phi : X \times Y$ by $\phi((x, y)) = f(x)$ and observe that $\phi \in C(X \times Y)$ and $Z(\phi) = \{p\} \times Y$. We claim that $Z(\phi)$ is nowhere dense, whence Y must be finite.

Suppose $(p,t) \in \text{int } Z(\phi)$. Then there are open sets $O_1 \subseteq X$ and $O_2 \subseteq Y$ such that

$$(p,t) \in O_1 \times O_2 \subseteq \{p\} \times Y.$$

It follows that p is an isolated point, a contradiction. Therefore, $Z(\phi)$ is nowhere dense.

Sufficiency. If both X and Y are almost P-spaces, then so is $X \times Y$ by [4, Proposition 5.10]. If X is h-local and Y is finite, then $X \times Y$ is homeomorphic to a finite sum of copies of X which is again h-local.

Remark 2.28. In [3], the authors investigate what they call DC-spaces (short for densely constant). The space X is a DC-space if for each $f \in C(X)$ there exist open sets $\{U_i : i \in I\}$ which are pairwise disjoint, the union of which is dense in X, and such that f is constant when restricted to each of the U_i . Any space with a dense set of almost P-points is a DC-space. Therefore, not every DC-space is h-local. Furthermore, a DC-space does not have any nowhere constant functions.

We do not know if an h-local space must be a DC-space.

Acknowledgement. We would like to thank the referee for their careful reading of the article and their thoughtful suggestions which vastly improved the paper.

References

- Bella, A. and P. Simon, Function spaces with a dense set of nowhere constant elements. Boll. Un. Mat. Ital. A (7) 4 (1990), no. 1, 121–124.
- [2] Bella, A. A couple of questions concerning nowhere constant continuous functions. Recent developments of general topology and its applications (Berlin, 1992), 27–32, Math. Res., 67, Akademie-Verlag, Berlin, 1992
- [3] Bella, A., Martinez, J., and Woodward, S. D. Algebras and spaces of dense constancies. Czechoslovak Math. J. 51(126) (2001), no. 3, 449–461.
- [4] Dashiell, F.; Hager, A.; Henriksen, M. Order-Cauchy completions of rings and vector lattices of continuous functions. Canadian J. Math. 32 (1980), no. 3, 657–685.
- [5] Fine, N. J., L. Gilman, J. Lambek Rings of Quotients of Rings of Continuous Functions. Lecture Note Series, McGill University Press (Montreal), 1966.
- [6] Fontana, M., Houston, E., Lucas, T. Factoring ideals in integral domains. Lecture Notes of the Unione Matematica Italiana, 14. Springer, Heidelberg; UMI, Bologna, 2013.
- [7] Gillman, L. and M. Jerison. Rings of Continuous Functions, Graduate Texts in Mathametics, Vol. 43, Springer Verlag, Berlin-Heidelberg-New York, 1976.
- [8] Gruenhage, G. and D. J. Lutzer, Perfect images of generalized ordered spaces, Fund. Math. 240 (2018), no. 2, 175–197.
- Henriksen, M., J. Vermeer, and R. G. Woods. Quasi F-covers of Tychonoff spaces. Trans. Amer. Math. Soc. 303 (1987), no. 2, 779-803.
- [10] Huckaba, James A. Commutative Rings With Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics, 117. Marcel Dekker, Inc., New York, 1988.

- [11] Jaffard, P. Théorie arithmétique des anneaux du type de Dedekind. II. Bull. Soc. Math. France 81, (1953). 41–61.
- [12] Levy, R. Almost P-spaces Can. J. Math. 29 (1977), no. 2, 284–288.
- [13] Lucas, Thomas G. Weakly additively regular rings and special families of prime ideals, Palest. J. Math. 7 (2018), no. 1, 14-31.
- [14] Mahdou, N., Mimouni, A., and Moutui, M. A. S. On pm-rings, rings of finite character and h-local rings. J. Algebra Appl. 13 (2014), no. 6, 1450018.
- [15] Matlis, E. Cotorsion Modules. American Mathematical Soc.Number 49, 1964.
- [16] Olberding, B. Characterizations and constructions of h-local domains. Models, modules and abelian groups, 385–406, Walter de Gruyter, Berlin, 2007.
- [17] Omairi, A. H-Local Rings. Thesis (Ph.D.)–Florida Atlantic University. 2019.

 1 pbhattacharjee@fau.edu, Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431

 2 Aepstein@uccs.edu, Department of Mathematics, University of Colorado, Colorado Springs, CO80918

 3 Warren.mcgovern@fau.edu, Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458

 4 to eniskoetter@oakland.edu, Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309