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ABSTRACT

An element in a ring is called clean if it may be written as a sum of a
unit and idempotent. The ring itself is called clean if every element is
clean. Recently, Anderson and Camillo (Anderson, D. D., Camillo,
V. (2002). Commutative rings whose elements are a sum of a unit
and an idempotent. Comm. Algebra 30(7):3327–3336) has shown that
for commutative rings every von-Neumann regular ring as well as
zero-dimensional rings are clean. Moreover, every clean ring is a
pm-ring, that is every prime ideal is contained in a unique maximal
ideal. In the same article, the authors give an example of a commu-
tative ring which is a pm-ring yet not clean, e.g., C(R). It is this
example which interests us. Our discussion shall take place in a more
general setting. We assume that all rings are commutative with 1.
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One of the main results is the following:

Theorem. For a Tychonoff space X, the ring C(X ) of continuous real-
valued functions on X is a clean ring if and only if X is strongly zero-
dimensional.

The more general setting hinted at above is that of semiprime
f-rings with bounded inversion. In general, most results concerning this
class of rings involve a concept that involves the lattice structure. As we
see above the idea of a clean ring is completely independent of this extra
structure.We shall lay the groundwork here but for additional information
we suggest the reader check Darnel (1995) or the classic reference
Bigard et al. (1977).

1. SEMIPRIME f-RINGS WITH BOUNDED

INVERSION

Definition 1. A lattice-ordered ring is a ring A equipped with a lattice
order � such that translation preserves the order and such that if
a, b� 0, then ab� 0. If A satisfies the additional property that if a^ b¼ 0
and c� 0 then ca^ b¼ 0 we say A is an f-ring. It is known that if one
assumes the Axiom of Choice or more generally the Boolean Prime Ideal
Theorem, then the condition of being an f-ring is equivalent to being
‘-isomorphic to an ‘-subring of a direct product of totally-ordered rings
(with coordinate-wise operations.) It is customary to assume this condition
as the definition of an f-ring. We shall simply assume the Axiom of Choice.

It is known that in an f-ring, squares, and hence 1, are positive, and
orthogonal elements annihilate each other. If A has the property that for
any positive elements a, b if na� b for all n2N then it follows that
a¼ 0, we call A an archimedean f-ring. It is known that archimedean
f-rings are semiprime (that is, they have no nonzero nilpotent elements)
and hence may be embedded into a direct product of totally-ordered integral
domains.

Max (A) is the set of maximal ideals of A equipped with the hull-kernel
topology. This means that sets of the form U(a)¼fM : a 62Mg for some
a2A form a base for the open sets of the topology. Recall that a topological
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space X is called zero-dimensional if it has a base of clopen sets. If the
space X in question is compact then X is zero-dimensional if and only if
it is totally disconnected.

Just for the record

Definition 2. An f-ring A is said to have the bounded inversion property
if u is a unit whenever u� 1.

The next lemma shall be useful.

Lemma 3 (Henriksen et al., 1961). Let A be a semi-prime f-ring. Then
A has bounded inversion if and only if each maximal ideal is a convex
‘-subgroup. In this case, Max(A) is a compact, Hausdorff space.

What we can immediately derive from the lemma is that for any
a2A, U(a)¼U(jaj). Thus, we need only consider positive elements when
considering basic open sets of Max(A). Also, observe that if f, a2A then
we may define a subset of Max(A) by setting

f �1ðaÞ ¼ fM 2 MaxðAÞ : f þM ¼ aþMg:
When a¼ 0, we instead denote this set by V( f ). These are the comple-
ments of U( f ) and so form a base for the topology of closed sets on
Max(A). Since we will dealing with zero-dimensional spaces it is helpful
to know when a subset of Max(A) is clopen. We recite without proof.

Lemma 4 (Woodward, 1993). Let A be a semi-prime f-ring with bounded
inversion. A set K�Max(A) is clopen if and only if K¼U(e) for some
idempotent e2A.

Definition 5. To each ring A recall that

A� ¼ fa 2 A : jaj � n for some n 2 Ng
is the bounded subring of A. A� is precisely the convex subring gener-
ated by 1. If A has bounded inversion then so does A�. Furthermore, in
Woodward (1993) Corollary 2.1, it is shown that whenever A is a semiprime
f-ring with bounded inversion then Max(A)ffiMax(A�).

Theorem 6. Let A be a semi-prime f-ring with bounded inversion. The
following are equivalent:

(i) Max(A) is zero-dimensional.
(ii) A is clean.
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(iii) A� is clean.
(iv) Every element of A may be written as a sum of unit and a square

root of 1, (that is, t2¼ 1).
(v) For every pair of relatively prime positive elements a, b2A there

is a t2A such that a� bt2 is a unit.

Proof. First observe that once we show that (i) and (ii) are equivalent
since Max(A)ffiMax(A�) it follows that the first three are equivalent.
That (ii) and (iv) are equivalent follows from the fact that bounded inver-
sion implies the hypothesis of Proposition 10 (Camillo and Yu, 1994).

(i) implies (ii). Let f2A and set Z1¼V( f� 1). If Z1¼;, then f� 1
is contained in no maximal ideal, and hence is a unit. Therefore
f¼ (f� 1)þ 1 is clean. So without loss of generality we assume that Z1

is nonempty. Set Z2¼V( f ). These are disjoint closed sets in Max(A).
Our hypothesis implies that we may find a clopen subset K�Max(A)
such that Z2�K and K\Z1¼;. By Lemma 4, we may choose an
idempotent e such that U(e)¼K. Then define

g ¼ eðf � 1Þ h ¼ ð1� eÞf
and set u¼ gþ h. Observe that

uþ e ¼ gþ hþ e ¼ ef � eþ f � ef þ e ¼ f ;

thus it suffices to show that u is a unit. But observe that Z(u)¼;. To see
this let M2Max(A). If M2K, then 1� e2M. Now, h(M )¼ 0 and
g(M )¼ f(M )� 1 6¼ 0 as M 62Z1. So u(M )¼ g(M ) 6¼ 0. Similarly, if
M 62K, then e2M and so g(M )¼ 0 and h(M )¼ f(M ) 6¼ 0 as M 62Z2.
Again, u(M )¼ h(M ) 6¼ 0. Thus, u belongs to no maximal ideal of A,
Whence u is a unit.

(ii) implies (i). LetM2U(a). Since U(a)¼U(jaj)¼U(jaj^1) without
loss generality we may assume that 0� a� 1. Since A=M is a totally
ordered field and a 62M, there is an 0� f2A such that afþM¼ 1þM.
Observe that M2U( fa)¼U( f )\U(a)�U(a). Thus, we may further
impose on a that aþM¼ 1þM. Now, by (ii) there is a unit u2A and
an idempotent e2A such that a¼ uþ e. Notice that if e 62M then

1þMaþM ¼ ðuþ eÞ þM

¼ ðuþMÞ þ eþM ¼ ðuþMÞ þ ð1þMÞ
and so u2M contradicting the fact that u is a unit. Thus, e2M. Since e is
idempotent it follows that 1� e 62M, i.e., M2U(1� e) where U(1� e) is a
clopen set. Furthermore, if N2U(1� e), then e2N and so a 62N. Thus,
M2U(1� e)�U(a). It follows that Max(A) is zero-dimensional.
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That (i) and (v) are equivalent is shown in Theorem 4.1 (Woodward,
1993). &

We end this section with a remark. In Woodward (1993) it is shown
that for semiprime f-rings with bounded inversion the property of being
local-global implies that Max(A) is zero-dimensional and hence clean.
When A is furthermore assumed to be archimedean then all 3 conditions
are equivalent. To date there are no examples showing that they differ.

2. C(X )

Definition 7. X denotes a topological space. Throughout, we assume that
X is Tychonoff, that is, it is Hausdorff and completely regular. Recall that a
space X is called completely regular if whenever V�X is closed and x 62V
then there exists an f2C(X ) such that f(x)¼ 0 and f(y)¼ 1 for all y2V.
C(X ) is the set of continuous real-valued functions with domain X. C(X )
is an archimedean f-ring with bounded inversion. C�(X ) denotes the subring
of bounded continuous functions on X. To any given Tychonoff space X,
we let bX denote its Stone-Čech compactification. It is known that
Max(C(X )) and bX are homeomorphic in a natural way. It follows that
Max(C(X ))ffiMax�(C(X )).

In general, there are examples of spaces with the property that X is
zero-dimensional yet bX is not (see the exercises of Chapter 16 (Gillman
and Jerrison, 1960)). If X has the property that bX is zero-dimensional,
then we call X strongly zero-dimensional. (It is necessary that X be zero-
dimensional for it to be strongly zero-dimensional.) Most zero-dimensional
spaces are strongly zero-dimensional; e.g., Lindelöff and basically discon-
nected spaces (the Stone duals of s-complete boolean algebras). It should
be noted for the nonexpert that the definition of zero-dimensional inGillman
and Jerrison (1960) is precisely what we are now calling strongly zero-
dimensional. Our main reference for rings of continuous functions isGillman
and Jerrison (1960), while our main reference for zero-dimensional spaces
is Porter and Woods (1988).

We now recall some needed terminology.

Definition 8. Subsets of X of the form

Zð f Þ ¼ fx 2 X : f ðxÞ ¼ 0g or cozð f Þ ¼ fx 2 X : f ðxÞ 6¼ 0g
for some f2C(X ) are called zerosets and cozerosets, respectively. Observe
that each zeroset is closed and each cozeroset is open. The set on which
f is nonnegative is symbolized by pos( f ), and neg( f ) is analogously
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defined. Obviously, coz( f )¼ pos( f )[ neg( f ). A characteristic function, i.e.,
a f0,1g-valued continuous function, defined on a clopen set K shall be
denoted by wK.

Lemma 9. Given disjoint zero-sets Z1, Z2 there exists a g2C(X ) such
that Z1¼ g�1f1g and Z2¼ g�1f� 1g.

Theorem 10 (4.7(g) Porter and Woods, 1988). Let X be a zero-dimen-
sional space. Then X is strongly zero-dimensional if and only if for every
pair of disjoint zerosets there is a clopen set separating them.

In proving the main theorem we are able to gather several character-
izations of cleanliness in the class of C(X )s.

Definition 11. Let A be a commutative ring with identity. U(A) and
Id(A) denote the set of units and idempotents of A, respectively. An ele-
ment x2A is said to be a root of an idempotent if xn2 Id(R) for some
natural n. Clearly, in a semiprime f-ring a root of an idempotent is a
square root of an idempotent. We call an element in a ring almost clean
if it may be written as the sum of a regular element (an element which is
not a zero divisor) and an idempotent. It is obvious that a clean ring is
almost clean.

The proof of the following is patent. There is also a separate formula-
tion involving cozerosets.

Proposition 12. Let X be a Tychonoff space and f2C(X ). Then

(1) f is a unit if and only if Z( f )¼;.
(2) f is a regular element if and only if Z( f ) is nowhere dense.
(3) f is an idempotent if and only if f¼ wK for some clopen K�X.
(4) f is a root of an idempotent if and only if f is {-1, 0, 1}-valued.

Theorem 13. Let X be a Tychonoff space. The following statements are
equivalent:

(i) C(X ) is clean.
(ii) C�(X ) is clean.
(iii) X is strongly zero-dimensional.
(iv) Every element of C(X ) may be written as the sum of a unit and a

root of an idempotent.
(v) C(X ) is almost clean.
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(vi) C�(X ) is almost clean.
(vii) For every pair of disjoint zerosets Z1, Z2 there exists a clopen set

K such that K\Z1 and (X�K )\Z2 are nowhere dense.

Proof. That (i), (ii), (iii), and (iv) are equivalent is Theorem 6.
We now show that (v), (vi), and (vii) are equivalent. Clearly, (v)

implies (vi) and so we prove (vi) implies (vii). Let Z1, Z2 be disjoint zero-
sets and choose f2C�(X ) such that f�1f1g¼Z1 and Z( f )¼Z2. Write
f¼ rþ e where e is an idempotent and r is a regular element. Let
K¼ coz(e) a clopen set. Observe that on K, f¼ rþ 1 and that
K\Z1�Z(r). Similarly, on X�K, f¼ r and so (X�K )\Z2�Z(r). Since
r is regular it follows that these sets are nowhere dense. Thus, (vi) implies
(vii).

(vii) implies (v). Let f2C(X ) and choose a clopen set K such that
K\Z( f� 1), (X�K )\Z( f ) are nowhere dense. Define r to be equal to
f� 1 on K and equal to f on X�K. Then f¼ rþ e. Since K is clopen
we get that r2C(X ). Also, Z(r)� (K\Z( f� 1))[ (X�K )\Z( f ) which
is nowhere dense, whence r is regular and C(X ) is almost clean.

To finish off the proof we need only demonstrate that (vi) implies
(iii). To this end suppose C�(X ) is almost clean. Thus, C(bX ) is almost
clean so that bX has property (vii). Without loss of generality we assume
that X is compact. Recall that for compact spaces zero-dimensionality
and total disconnectedness are the same property and so if X is not
zero-dimensional, then there are distinct x, y2X which lie in the same
connected component. Choose disjoint zerosets Z1,Z2 such that x2Z1,
y2Z2. Moreover, we may assume that each point is in the interior of
the chosen zeroset. By (vii) we may find a clopen set K for which
K\Z1 and (X�K )\Z2 are nowhere dense. Since K is clopen either
x, y2K or x, y 62K. In the first case we obtain that y lies in the interior
of (X�K )\ Z2 and in the second case we have that x is in the interior
of K\Z1. Either way we derive a contradiction. Thus, X is zero-
dimensional. &

Remark 14. The almost clean property deals with writing an element as
a sum of a regular element and an idempotent. Thus it is natural to ques-
tion when C(X ) has the property that every element may be written as a
product of a regular element and an idempotent. This happens precisely
when every principal ideal is projective; in Endo (1960) one direction is
proved. We supply the other direction below. Thus, every element of
C(X ) would satisfy this property if and only if every principal ideal is
projective; a so-called p.p. ring. In Theorem 8.4.4 of Glaz (1989), the
spaces X for which C(X ) is a p.p. ring are characterized as basically
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disconnected spaces; a theorem due (independently) to Neville (1990),
Brookshear (1978), and De Marco (1983).

Proposition 15 (Endo, 1960). Every element of a commutative ring R may
be written as a product of a regular element and an idempotent if and only if
R is a p.p. ring.

Proof. In Endo (1960), the author showed the sufficiency. Let x2R.
Write x¼ re where r is regular and e is idempotent. Clearly, the ideal
(e) is projective. Define a map j : (e)! (x) by j(se)¼ sx. Since r is regular
this is well defined and j is a surjective R-module homomorphism. The
kernel of this map is simply fse : sx¼ 0g¼fse : sre¼ 0g¼f0g again
by regularity of r. Thus, (x) being isomorphic to a projective module is
projective itself, and therefore R is a p.p. ring. &

Proposition 16. Suppose R is a p.p. ring. Then R is almost clean.

Proof. Let x2R and write x¼ re where r is regular and e is idempotent.
Let v¼ re� (1� e) and f¼ 1� e then x¼ vþ f. As e is idempotent so is f.
Thus, all we need demonstrate is that v is regular. Suppose sv¼ 0. Then
we obtain that sre¼ s(1� e), whence sre¼ 0¼ s(1� e). Since r is regular it
follows that se¼ 0. Now, s2Ann(1� e)¼ (e) so that for some t2R we
have s¼ te. So 0¼ se¼ te2¼ te¼ s, whence r is regular and x is almost
clean. &

Corollary 17. Every basically disconnected space is strongly zero-dimen-
sional.

In Proposition 1.9 (Nicholson, 1977) it is shown that every commu-
tative clean ring is potent. Recall that a ring R is potent if idempotents
may be lifted module J(R) and that every ideal not contained in J(R)
contains a nonzero idempotent. (J(R) denotes the Jacobson radical of R.)
If J(R)¼ 0, then it follows R is potent if and only if every principal
ideal contains an idempotent. We conclude with a characterization of
when C(X ) is potent. This condition is weaker than cleanliness. Recall
that a space X is said to have a clopen p-base if every open set contains
a clopen subset.

Proposition 18. For a Tychonoff space X, C(X ) is potent if and only if X
has a clopen p-base.

Corollary 19. C(X ) is potent if and only if C�(X ) is potent.
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Proof. We will show that X has a clopen p-base if and only if bX has a
clopen p-base. This is known and proved in Martinez and Woodward
(1996) but our proof avoids any mention of specker algebras.

Sufficiency: This follows from the fact that a dense subspace of a
space with a clopen p-base has a clopen p-base.

Necessity: Let f2C�(X ) be nonzero with f� 0. Let U¼
fx2X : f(x) > 1

Eg for some E > 0 so that U 6¼ ;. Now, U is a cozerset of
X and so the hypothesis says there is a clopen set K�U. Define g2C(X )
to be 1

f on K and 0 otherwise. Then wK¼ fg. Finally observe that g is
bounded and so C�(X ) is potent. &

Example 20. The class of spaces for which C(X ) is potent (properly)
includes zero-dimensional spaces and specker spaces (see Bella et al.,
1996). Also, since there are zero-dimensional spaces X for which bX is
not zero-dimensional it follows that there are examples of a potent
C(X ) which is not clean. There is another f-ring characterization for
when C(X ) is potent given in Martinez and Woodward (1996).
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