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Abstract. We study the space Maxd(G) of maximal d-subgroups of a lattice-ordered group,
paying specific attention to archimedean `-groups with weak order unit. For such an object
(G, u), Maxd(G) lays at a level in between the space of minimal prime subgroups and the
Yosida space of (G, u). Theorem 5.10 gives the appropriate generalization of a quasi F -space
to W-objects which avoids a discussion of o-complete `-groups.

1. Introduction

It is a classical result in the theory of rings of continuous functions that, for a Tychonoff
space X, the space of maximal ideals of C(X) and the space of zero-set ultrafilters of X are
homeomorphic; this latter space is the Stone-Čech compactification of X. This result has
been generalized in the context of archimedean `-groups with distinguished weak order unit:
the category W whose objects are pairs (G, u) for an archimedean `-group G and 0 < u ∈ G
a distinguished weak order unit, and whose morphisms between two objects (G, u) and (H, v)
are `-group homomorphisms φ : G −→ H for which φ(u) = v.

For a compact space X, the space of ultrafilters on the Wallman lattice

Z#(X) = {clX intX Z : Z ∈ Z(X)}

is known as the quasi F -cover of X and is in bijective correspondence to the maximal d-ideals
of C(X). It is this correspondence that we shall show generalizes in the context of W. We
also generalize some results that occur for uniformly complete archimedean `-groups.

We assume the reader is familiar with the fundamental results from the theory of lattice-
ordered groups. In particular, we assume the reader is familiar with terms like convex `-
subgroups, values, prime subgroups, and weak and strong order units. The texts [9], [12],
[32], and [7] are excellent sources for the material to be discussed here. For a condensed
version of the background information for this article, the reader is urged to familiarize
themselves with the ideas found in [8]; for which this article is a continuation.

The prime spectrum of G is denoted by Spec(G). The collection of the minimal prime
subgroups is denoted by Min(G). Globally, Spec(G) can be topologized with the hull-kernel
topology. Basic open sets are of the form S(g) = {P ∈ Spec(G) : g /∈ P}, indexed over
0 6= g ∈ G. Each S(g) is compact, but not necessarily Hausdorff. The set Val(g) of values
of g is a subset of S(g). The hull-kernel topologies on Min(G) and Val(g) are precisely the
subspace topologies inherited from Spec(G). The basic open set S(g)∩Min(G) of Min(G) will
be denoted instead by U(g), while a basic open set of Val(g) has the form S(h)∩Val(g). Each
space Val(g) is a compact Hausdorff space. Since Spec(G) is a root system, each P ∈ S(g)
is contained in a unique µg(P ) ∈ Val(g). The restriction of µg to U(g) will be denoted by
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λg : U(g) −→ Val(g). It is known that both µg and λg are continuous maps. More is now
known.

For g ∈ G, let V (g) = {P ∈ Min(G) : g ∈ V } and observe that V (g) = Min(G) r U(g),
a basic closed subset of the hull-kernel topology on Min(G). Interestingly, the collection
{V (g) : g ∈ G} is closed under finite intersections (and unions) and thus is a base for an
open topology on Min(G) called the inverse topology; Min(G)−1 denotes the space of minimal
prime subgroups equipped with the inverse topology. The hull-kernel topology on Min(G) is
finer than the inverse topology.

Proposition 1.1 (Theorem 3.10 [8]). For any weak order unit 0 < u ∈ G, the map

λu : Min(G)−1 −→ Val(u)

is continuous.

In the context of W, it is standard to denote the set of values of u by Y G and call Y G
the Yosida space of (G, u); Y G is a compact Hausdorff space. A basic open set has the form

coz(g) = {p ∈ Y G : g /∈ p},
for some g ∈ G, and which is simply the set coz(g) = Y G ∩ S(g). This set is called the
cozero-set of g. Any subset of Y G of this form is known as a G-cozero-set; the collection
of all such subsets is denoted by coz(G), and obviously is a base for the topology of open
subsets of Y G. The complement of a G-cozero-set is a G-zero-set and the collection of these
is denoted by Z(G). In the few cases where a discussion of (G, u) and (G, v) takes place with
0 < u, v different weak order units, we shall use the symbol YosG(u) to denote the Yosida
space relative to u.

We revisit the Yosida Embedding Theorem. Let R̄ = R∪{+∞,−∞} denote the two-point
compactification of the real numbers with the obvious ordering. For a Tychonoff space X
and a continuous function f : X −→ R̄, set re(f) = f−1(R); this is known as the reality set
of f .

D(X) = {f : X −→ R̄ : f is continuous and re(f) is a dense subset of X}.
In general, D(X) is a lattice under the pointwise operations but not a group under (almost)
pointwise addition. However, by an `-subgroup of D(X) is meant a subcollection H of D(X)
that is a sublattice and is also closed under the addition defined as follows: for f, g ∈ H there
is an h ∈ H such that for all x ∈ re(f) ∩ re(g), f(x) + g(x) = h(x). We now state one of the
most important theorems in the context of W.

Theorem 1.2 (The Yosida Embedding Theorem). Let (G, u) be a W-object. There is an

`-isomorphism of G (g 7→ ĝ) onto an `-subgroup Ĝ ≤ D(Y G) such that û = 1 and Ĝ has
the following separation property: for each p ∈ Y G and closed set V ⊆ Y G not containing
p, there is some g ∈ G for which ĝ(p) = 1 and ĝ(q) = 0 for all q ∈ V . Moreover, Y G is the
unique compact space, up to homeomorphism, satisfying these two properties.

Example 1.3. The quintessential example of a W-object is (C(X),1) for a Tychonoff space
X. By properties of the Stone-Čech compactfication, each f ∈ C(X) extends to an f̄ :
βX −→ R̄, inducing an `-isomorphism of C(X) inside D(βX) which separates points of βX.
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Therefore, Y C(X) = βX. Observe then that a C(X)-zero-set is a member of Z(βX), and
vice versa. It is standard to call a subset Z of X, a zero-set of X if Z = {x ∈ X : f(x) = 0}
for some f ∈ C(X). The set of all zero-sets of X is denoted by Z(X). Note that if X is not
compact, then Z(X) and Z(C(X)) are not the same, as the first is a collection of subsets of
X, while the second is a collection of subsets of βX.

A second important example is C(X,Z). Recall that this notation stands for the `-group
of integer-valued continuous functions on X. When studying this `-group it will be assumed
that X is a zero-dimensional space. A similar argument is useful in characterizing Y C(X,Z)
as β0X, the Banaschewski compactification of X. This compactification is the Stone dual of
B(X), the boolean algebra of clopen subsets of X.

We do point out that, obviously, both C(X) and C(X,Z) have many weak order units.
However, when we speak of C(X) and C(X,Z), unless otherwise noted, it will be assumed
that 1 is the distinguished weak order unit.

We conclude this section with a recollection of some important terminology from the theory
of `-groups. For S ⊆ G, the polar of S is the set

S⊥ = {h ∈ G : |g| ∧ |h| = 0 for all g ∈ S}.

When S = {g} we instead write g⊥. Notice that the symbols S⊥⊥ and g⊥⊥ are obvious.
A central concept is the following. The `-group G is said to be projectable if for all g ∈ G,
G = g⊥ + g⊥⊥. Next, the convex `-subgroup generated by an element g ∈ G is the set

G(g) = {h ∈ G : |h| ≤ n|g| for some n ∈ N}.
The collection of all convex `-subgroups of G is denoted by C(G). When partially-ordered
by inclusion C(G) is an algebraic frame with the FIP and disjointification. For H,K ∈ C(G),
the join and the meet of H and K will be denoted by H

∨
K and H

⋂
K, respectively.

For (G, u) ∈ W, the convex `-subgroup of G generated by u is denoted by G∗. Observe
that (G∗, u) ∈ W. The Yosida Embedding Theorem represents elements of G∗ as bounded
elements of D(Y G), so that G∗ ⊆ C(Y G) and Y G∗ = Y G.

2. Spaces of Ultrafilters

Throughout this section we assume that (G, u) ∈W.
As mentioned in the first section there is a nice correspondence between Y G and the

collection of Z(G)-ultrafilters. This correspondence is obtained as follows. Start with a
convex `-subgroup H ≤ G and form

Z[H] = {Z(h) ∈ Z(G) : h ∈ H}.
It is straightforward to check that Z[H] is a Z(G)-filter. Also, ∅ ∈ Z[H] if and only if H = G.

Next, let F be a Z(G)-filter and form
←−
F = {h ∈ G : Z(h) ∈ F}.

Then
←−
F is a convex `-subgroup, and is proper if and only if F is a proper filter. The main

result is that Z[H] is a Z(G)-ultrafilter if and only if H is a value of u. Next, the space of
Z(G)-ultrafilters can be topologized with the Wallman topology. As this topology is central
to our discussion, we elaborate.
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Definition 2.1. Let (L,∨,∧, 0, 1) be a bounded distributive lattice, and let Ult(L) denote
the collection of L-ultrafilters. For a ∈ L, denote the set of ultrafilters containing a by V(a).
The operator V(·) has the following properties: [3].

(i) For each a, b ∈ L, V(a) ∪ V(b) = V(a ∨ b) and V(a) ∩ V(b) = V(a ∧ b).
(ii) The collection {V(a) : a ∈ L} forms a base for a topology of closed sets on Ult(L).

This is called the Wallman topology on Ult(L).
(iii) For each a < 1, there is a 0 < c ∈ L such that a ∧ c = 0 if and only if the map

a −→ V(a) is injective. (A lattice satisfying either of these equivalent conditions is
called a Wallman lattice.)

(iv) If L is a Wallman lattice, then Ult(L) is a compact T1-space.
(v) The space Ult(L) is a Hausdorff space if and only if for any a, b ∈ L such that a∧b = 0

there exists x, y ∈ L such that x ∨ y = 1 and a ∧ y = 0 = b ∧ x. (When Ult(L) is a
Hausdorff space, we shall say L is a normal lattice.)

Example 2.2. A boolean algebra B is easily seen to be a normal Wallman lattice. Its space
of ultrafilters is known to be isomorphic to its Stone dual, i.e. the space of maximal ideals of
B. Therefore, Ult(B) is a compact zero-dimensional Hausdorff space.

Now, Z(G) is a bounded distributive lattice. It is straightforward to check that Z(G) is
a normal Wallman lattice. Therefore, the space of Z(G)-ultrafilters is a compact Hausdorff
space. Furthermore, Y G and Ult(Z(G)) are homeomorphic via the restriction of the map
Z[·] to Y G.

Another example where this type of construction has been useful is in the construction of
the essential closure of a W-object (see [10]). Starting with a compact Hausdorff space X
one forms R(X), the collection of regular closed subsets of X. (Recall that V ⊆ X is called
regular closed if V = clX intX V .) It is well-known that R(X) is a (complete) boolean algebra
when partially ordered by inclusion. The meet, join, and complement are given as follows:
for V1, V2 ∈ R(X)

(i) V1 ∪′ V2 = V1 ∪ V2;
(ii) V1 ∩′ V2 = clX intX(V1 ∩ V2);

(iii) V ′1 = clX(X r V1).

Since R(X) is a boolean algebra, it is a normal Wallman lattice, and thus one can speak of its
space of ultrafilters Ult(R(X)). It is customary to denote the space of R(X)-ultrafilters by
E(X) and call E(X) the absolute of X. It is known that E(X) is the extremally disconnected
cover of X, as well as the projective cover constructed by Gleason. The covering map is
defined by eX : E(X) −→ X:

eX(U) =
⋂
U

where
⋂
U = {p}, a unique point in this set eX(U), since X is compact. (For a detailed

discussion on covers and covering maps, we point the reader to [35].)

We now turn to another construction that has been developed and the one that we are
interested in generalizing for W-objects (see [25]). Recall that

Z](X) = {clX intX Z : Z ∈ Z(X)}.
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This collection is a sub-lattice of R(X) and is a normal Wallman lattice. The space of
ultrafilters of Z](X) is denoted by QF (X) and it is well-known that QF (X) is a compact
quasi F -space which covers X with the covering map ΨX defined in the analogous way.

For (G, u) ∈W, define

Z](G) = {clY G intY G Z(f) : f ∈ G}.
Observe that each member of Z](G) belongs to Z](Y G) and so is a regular closed set. More-
over, it follows from Lemma 2.2 of [25] that Z](G) is a sublattice of R(Y G). Furthermore,
for all Z1, Z2 ∈ Z(G)

clY G intY G Z1 ∩′ clY G intY G Z2 = clY G intY G(Z1 ∩ Z2)

and
clY G intY G Z1 ∪′ clY G intY G Z2 = clY G intY G(Z1 ∪ Z2).

It will be shown later that Ult(Z](G)) is a Hausdorff space, by an indirect route. We
leave it to the interested reader to show that Z](G) is a normal Wallman lattice; the Yosida
Embedding Theorem is pivotal.

Example 2.3. As pointed out in the previous section, for a compact space X, Z(C(X)) =
Z(X). There are many examples of W-objects (G, u) such that Z(G) = Z(Y G). Some
examples of this include i) uniformly complete W-objects, ii) convex W-objects, that is,
whenever f ∈ D(Y G) and there are g1, g2 ∈ G such that g1 ≤ f ≤ g2, then f ∈ G. In this
case, the construction of Ult(Z](G)) produces the quasi F -cover of X = Y G.

For a general W-object (G, u), it is possible that Z](G) is actually nothing more than the
boolean algebra of clopen subsets of Y G; it is always the case that B(Y G) ⊆ Z](G). For
example, if Y G is basically disconnected, then B(Y G) = Z](G). This equality leads us to
consider the coincidence of the sets Z(G), Z](G), and B(Y G). Recall from [18] that (G, u) is
said to be bounded away if for every g ∈ G+, there is some ε > 0 such that for all p ∈ coz(g),
ε ≤ g(p).

Proposition 2.4 (Theorem 2.3 [18]). Let (G, u) be a W-object. The following statements
are equivalent.

(1) Z(G) = B(Y G).
(2) Z(G) = B(Y G) = Z](G).
(3) (G, u) is a bounded away `-group.
(4) (G∗, u) is hyper-archimedean.
(5) (G∗, u) is bounded away.
(6) Every W-homomorphic image is bounded away.
(7) Every value of u is a minimal prime subgroup of G.
(8) Min(G) = Y G.

Proof. The equivalencies of the conditions (3) through (8) are shown in [18, Theorem 2.3].

(1) is equivalent to (2). Clearly, if Z(G) = B(Y G), then B(Y G) = Z](G). The converse
is obvious.

(1) is equivalent to (3). If every G-zero-set of G is clopen, then so is every G-cozero-set.
Since Y G is compact it follows that the image of g(coz(g)) is a compact subset of (0,∞]
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and so has a nonzero minimum. Therefore, (G, u) is bounded away. Conversely, if (G, u) is
bounded away then for each g ∈ G+, coz(g) = g−1([ε,∞]) a closed subset of Y G. Therefore,
each G-cozero-set is clopen. �

A more general class of W-objects that is of interest here is the class of weakly projectable
W-objects. (G, u) is said to be weakly projectable if for every g ∈ G, cl coz(g) ∈ B(Y G).
Observe that this is equivalent to saying that intZ(g) ∈ B(Y G) for all g ∈ G. Obviously, in
this case, Z](G) = B(G). For more information on weakly projectable W-objects we suggest
the reader check [19] and the more recent carnation [21]. The concept of a weakly projectable
`-group does indeed generalize the concept of a projectable `-group.

Theorem 2.5. Let (G, u) be a W-object. The following statements are equivalent.
(1) Z](G) = B(Y G).
(2) (G, u) is weakly projectable.
(3) (G∗, u) is weakly projectable.

Proof. As was pointed out above, a weakly projectable W-object (G, u) satisfies Z](G) =
B(G). Conversely, suppose that Z](G) = B(G) and let g ∈ G. Then cl intZ(g) is a clopen
subset of Y G. By taking complements, this means that int cl coz(g) is also clopen. Therefore,

int cl coz(g) = cl int cl coz(g) = cl coz(g)

is clopen. Consequently, (G, u) is weakly projectable. �

Example 2.6. For a Tychonoff space X, C(X) is bounded away if and only if X is finite.
On the other hand C(X,Z) is always bounded away. Turning to the concept of weakly
projectable, it is true that C(X) is weakly projectable if and only if it is projectable if and
only if X is basically disconnected. C(X,Z) is always projectable.

What is left to discuss is the situation when the equality Z(G) = Z](G) holds. However,
we leave this to Theorem 5.3 in order to be able to expand on the discussion.

3. cl coz(G)

It ought to be apparent by looking at the proof of Theorem 2.5, that the collection
cl coz(G) = {cl coz(g) : g ∈ G} is of high importance. The collection has some nice properties
which we aim to discuss in this section.

Lemma 3.1. For a W-object (G, u), cl coz(G) is a Wallman sublattice of R(Y G).

Proof.

cl coz(g1) ∩′ cl coz(g2) = cl int(cl coz(g1) ∩ cl coz(g2))

= cl(coz(g1) ∩ coz(g2))

= cl coz(|g1| ∧ |g2|)
and

cl coz(g1) ∪′ cl coz(g2) = cl coz(g1) ∪ cl coz(g2)

= cl(coz(g1) ∪ coz(g2))

= cl coz(|g1| ∨ |g2|).
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This shows that cl coz(G) is a sublattice of R(Y G). The Yosida Embedding Theorem is
used to show that it is a Wallman lattice. �

In general, the lattice cl coz(G) need not be a normal lattice. Example 2.6 of [25] shows
that there is a compact Hausdorff space X, for which the space of ultrafilters of cl coz(X) is
not Hausdorff. We use the rest of this section to discuss Ult(cl coz(G)), concluding with a
characterization of when Ult(coz(G)) is Hausdorff.

Lemma 3.2. Let (G, u) be a W-object.
(a) For U ∈ Ult(coz(G)), the collection U = {clC ∈ cl coz(G) : C ∈ U} is a cl coz(G)-

ultrafilter.
(b) For F ∈ Ult(cl coz(G)), the collection F = {C ∈ coz(G) : clC ∈ F} is a coz(G)-

ultrafilter.
(c) The map (·) : Ult(coz(G)) −→ Ult(cl coz(G)) is a bijection.

(d) Moreover, the map (·) is a homeomorphism with respect to the Wallman topologies.

Proof. (a) Let clC, clD ∈ U for C,D ∈ coz(G). Then clC ∩′ clD = cl(C ∩ D) which must
also belong to U since C ∩D ∈ U .

Next, let clC ∈ U with C ∈ U . Let D ∈ coz(G) satisfy clC ⊆ clD. Then

clD = clC ∪′ clD = cl(C ∪D)

which belongs to U since C ∪D ∈ U .
Lastly, to show that U is an ultrafilter, let clD /∈ U with D ∈ coz(G). This means that

D /∈ U and so there is some C ∈ U such that C ∩D = ∅. Then, clC ∈ U and

clC ∩′ clD = cl(C ∩D) = ∅,

whence we gather that U is a cl coz(G)-ultrafilter.

(b) Let F ∈ cl coz(G) and F defined as in the statement of the lemma. Let C,D ∈ F , which
means that clC, clD ∈ F . Since F is a filter, then cl(C ∩D) ∈ F . Therefore, C ∩D ∈ F .
Similarly, as above, if C ∈ F and C ⊆ D, then clC ⊆ clD which means that clD ∈ F ,
whence D ∈ F .

Finally, suppose D ∈ coz(G) and D /∈ F . Then clD /∈ F and so there is some clC ∈ F for
which clC ∩′ clD = ∅. Then C ∩D = ∅ with C ∈ F .

(c) Let U ∈ Ult(coz(G)). Observe that U ⊆ (U). Since U is an ultrafilter it follows that

they are equal. Conversely, given V ∈ Ult(cl coz(G)). Then since V ⊆ (V), we again conclude
that these two sets are equal. It follows that the identifications given above are inverse
functions of each other.

(d) Recall that a basic closed subset of the Wallman topology on Ult(coz(G)) is the collec-
tion of ultrafilters that contain a fixed cozero-set: V(C) for C ∈ coz(G). We leave it to the
interested reader to check that

V(C) = V(clC) and V(clC) = V(C).

�
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Remark 3.3. In [4], the authors show that for an arbitrary `-group G, the space of ultrafilters
of the (bounded below) lattice G+ is homeomorphic to Min(G)−1. This uses the well-known
Lemma on Ultrafilters.

For a W-object (G, u), the space of ultrafilters of coz(G) is also homeomorphic to the
space of ultrafilters of G+. Therefore, it is obvious that the space of ultrafilters of coz(G),
and hence of cl coz(G), has to do more with the structure of G, rather than of the Yosida
space itself. We state this formally in our next two results.

Definition 3.4. Recall from [8], that an `-group G is called lamron if whenever a, b ∈ G+

such that a ∧ b = 0, then there are x, y ∈ G+ such that a ≤ x, b ≤ y, a ∧ y = 0 = b ∧ x, and
x ∨ y is a weak order unit.

Theorem 3.5. For a W-object (G, u), the spaces Ult(cl coz(G)) and Min(G)−1 are homeo-
morphic. Consequently, the following statements are equivalent.

(1) Ult(cl coz(G)) is a Hausdorff space.
(2) Min(G)−1 is a Hausdorff space.
(3) G is a lamron `-group.
(4) For each pair of disjoint G-cozero-sets C1, C2, there exists G-zero-sets Z1, Z2 such

that C1 ⊆ Z1, C2 ⊆ Z2, and intZ1 ∩ intZ2 = ∅.

Proof. [4, Theorem 4.8] states that Ult(coz(G)) and Min(G)−1 are homeomorphic. That (2)
and (3) are equivalent follows from [8, Theorem 2.7], while [8, Theorem 3.15] states and
proves that (3) and (4) are equivalent. �

Corollary 3.6. Let G be an archimedean `-group and 0 < u, v ∈ G be weak order units. Let
G = G1 = G2 and consider the W-objects (G1, u) and (G2, v). Then the space of cl coz(G1)-
ultrafilters and the space of cl coz(G2)-ultrafilters are homeomorphic.

Example 3.7. Let D be an uncountable discrete space and αD its one-point compactificaton.
Interestingly, the W-object C(αD,Z) satisfies the property

coz(C(αD,Z)) = B(αD) = cl coz(C(αD,Z)).

C(αD,Z) is a lamron `-group, and hence Ult(cl coz(C(αD,Z)) is Hausdorff. However, C(αD)
is not a lamron `-group. Hence, cl coz(αD) is not a normal lattice. Of course, this works for
any compact zero-dimensional Hausdorff space X for which C(X) is not lamron.

4. d-subgroups

Definition 4.1. Let G be a `-group and K ∈ C(G)1. K is called a d-subgroup if whenever
g ∈ K, then g⊥⊥ ⊆ K.

Examples of d-subgroups include polar subgroups and minimal prime subgroups. There
has been much work on the study of d-ideals of C(X) and other types of archimedean f -rings.
From a different vantage point, Martinez and Zenk [33] studied d-elements in algebraic frames
with FIP. The work of Huisjmans and de Pagter [27] is particulary influential in that they
studied maximal d-ideals in uniformly complete vector lattices.

1C(G) is the frame of convex `-subgroups of G.
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Denote the set of d-subgroups of G by Cd(G). An intersection of d-subgroups is again a
d-subgroup. Therefore, Cd(G) forms a complete lattice. In fact, it is an algebraic frame with
FIP. Each convex `-subgroup is contained in a smallest d-subgroup; denote this operator by
Gd(·).

Lemma 4.2. Let K ∈ C(G). The smallest d-subgroup containing K is

Gd(K) =
∨
k∈K

k⊥⊥.

Consequently, K ∈ C(G) is a d-subgroup if and only if K =
∨
k∈K k

⊥⊥. Furthermore,

Gd(g) = g⊥⊥.

The only d-subgroup of G that contains a weak order unit is G itself (in the case it has one).
Furthermore, a union of a chain of d-subgroups of G is again a d-subgroup, and if G possesses
a weak order unit, then a union of a chain of proper d-subgroups is again proper. Therefore,
one may speak of maximal d-subgroups when G has a weak order unit. Let Maxd(G) denote
the set of maximal d-subgroups. When studying Maxd(G) it will be assumed that G possesses
a weak order unit to ensure that Maxd(G) 6= ∅. However, there is no need to assume that G
is even abelian. Of course, we will focus on W-objects.

Proposition 4.3. Let G possess a weak order unit.
(a) Let H ∈ C(G). If H does not contain any weak order units, then neither does Gd(H).
(b) If K ∈ Maxd(G), then K is maximal with respect to not containing a weak order unit.
(c) If H is maximal with respect to not containing any weak order unit, then H ∈

Maxd(G).
(d) If K ∈ Maxd(G), then K ∈ Spec(G).

Proof. (a) If 0 < u ∈ G+ belongs to Gd(H), then there is some 0 < h ∈ H+ such that
u ∈ h⊥⊥. If u is a weak order unit, then so is h.

(b) Let K ∈ Maxd(G). Indeed, K does not contain any weak order unit. Let K ≤ H and
suppose that H does not contain any weak order unit. By (a), Gd(H) does not contain any
weak order unit and is a d-subgroup. By maximality, K = H = Gd(H).

(c) Suppose H is maximal with respect to not containing any weak order unit (such things
exist by Zorn’s Lemma). By (a), neither does Gd(H), and so by maximality, H = Gd(H) is
a d-subgroup. Any proper d-subgroup containing H will not contain any weak order units,
so that H ∈ Maxd(G).

(d) Suppose that a∧ b = 0 and a /∈ K. Then Cd(a,K) = G. So, there is some 0 < k ∈ K+

such that b ∈ a⊥⊥ ∨ k⊥⊥. Applying, the Riesz Decomposition Theorem, there is some
0 < b1 ∈ a⊥⊥ and 0 < b2 ∈ k⊥⊥ such that b = b1 + b2.

b = b ∧ b = b ∧ (b1 + b2) ≤ (b ∧ b1) + (b ∧ b2) = b ∧ b2.

Thus, 0 ≤ b ≤ b2 ∈ K. �
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The set Maxd(G) can be equipped with the hull-kernel topology. For g ∈ G, let Ud(g) =
{M ∈ Maxd(G) : g /∈M}. Then, similar to what occurs for Spec(G), the following hold (see
[8, Proposition 2.1]). Clearly, Ud(g) = Ud(|g|).

Lemma 4.4. The following hold for all g, h ∈ G+.
(a) Ud(g) = Maxd(G) if and only if g is a weak order unit.
(b) Ud(g) ∪ Ud(h) = Ud(g ∨ h).
(c) Ud(g) ∩ Ud(h) = Ud(g ∧ h).
(d) The subset T ⊆ Maxd(G) is open in the hull kernel topology if and only if there is

some d-subgroup H for which T = Ud(H).
(e) If (G, u) ∈W, then Ud(g) = ∅ if and only if g = 0.

Theorem 4.5. Let G possess a weak order unit. The space Maxd(G) is a compact Hausdorff
space.

Proof. Since G possesses a weak order unit it is clear that Maxd(G) is nonempty. In [33] it is
pointed out that, and in a more general setting, the set of d-subgroups of G, denoted Cd(G),
is an algebraic frame with FIP. This yields that Maxd(G) is a compact space. Furthermore,
disjointification in G can be used to show that Maxd(G) is Hausdorff as we now demonstrate.

Let M,N ∈ Maxd(G) be distinct maximal d-subgroups. Since M and N are incomparable,
there are p ∈M+rN and q ∈ N+rM . By disjointification, it follows that there are 0 < p ∈
M+ rN and 0 < q ∈ N+ rM such that p∧ q = 0. Then, Ud(p)∩Ud(q) = Ud(p∧ q) = ∅ and
N ∈ Ud(p), M ∈ Ud(q). Consequently, the hull-kernel topology on Maxd(G) is Hausdorff. �

Now is the time to connect the concept of d-subgroups to the collection Z](G) for a W-
object (G, u). Let H be any convex `-subgroup that does not contain any weak order unit of
G, and define

Z][H] = {cl intZ(g) : g ∈ H}.
Then Z][H] is a proper filter on Z](G) since, in the first place, for all f, g ∈ H,

cl intZ(f) ∩′ cl intZ(g) = cl int(Z(f) ∩ Z(g))

= cl intZ(|f | ∨ |g|),

with |f | ∨ |g| ∈ H. In the second place, if cl intZ(f) ⊆ cl intZ(g) and f ∈ H, then

cl intZ(g) = cl intZ(f) ∪ cl intZ(g)

= cl int(Z(f) ∪ Z(g))

= cl int(Z(|f | ∧ |g|)

By convexity, |f | ∧ |g| ∈ H. In the third place, notice that since cl intZ(f) = ∅ if and only if
intZ(f) = ∅ if and only if f is a weak order unit, Z][H] is a proper Z](G)-filter. Therefore,
the map Z][·] takes convex `-subgroups which do not contain weak order units to (proper)
Z](G)-filters.

Inversely, let F be a proper Z](G)-filter and set

←−
Z][F ] = {f ∈ G : cl intZ(f) ∈ F}.



MAXIMAL d-SUBGROUPS AND ULTRAFILTERS 11

Then a similar argument as just provided demonstrated that
←−
Z][F ] is a convex `-subgroup

that does not contain a weak order unit. More can be said.

Lemma 4.6. The following hold for the W-object (G, u).

(a) For any proper Z](G)-filter, say F ,
←−
Z][F ] is a d-subgroup.

(b) For any g ∈ G, g⊥⊥ = {k ∈ G : cl intZ(g) ⊆ cl intZ(k)}.

Proof. (a) Let 0 < k ∈
←−
Z][F ]+. This means that cl intZ(k) ∈ F . Let g ∈ k⊥⊥. Then

coz(g) ⊆ cl coz(k).

Complementation yields that intZ(k) ⊆ Z(g), and thus, intZ(k) ⊆ intZ(g). Taking closures
of both sides results in

cl intZ(k) ⊆ cl intZ(g).

By hypothesis, F is a Z](G)-filter and so cl intZ(g) ∈ F , and therefore g ∈
←−
Z][F ].

(b) Observe that

g⊥⊥ = {k ∈ G : coz(k) ⊆ cl coz(g)}
= {k ∈ G : intZ(g) ⊆ Z(k)}
⊆ {k ∈ G : cl intZ(g) ⊆ cl intZ(k)}.

The lemma states that the first and last sets are equal. Let k ∈ G satisfy

cl intZ(g) ⊆ cl intZ(k).

By way of contradiction, assume that intZ(g) * intZ(k). Let x ∈ intZ(g) r intZ(k). That
x /∈ intZ(k) means that x ∈ cl coz(k). That x ∈ intZ(g) means there is an open set O such
that x ∈ O ⊆ intZ(g). Combining these two, forces the existence of a t ∈ O ∩ coz(k). On
the one hand,

t ∈ O ⊆ intZ(g) ⊆ cl intZ(k),

by hypothesis. So since t ∈ O ∩ coz(k) there is a y ∈ intZ(k) ∩ (O ∩ coz(k)). So y ∈ Z(k)
and y ∈ coz(k), the desired contradiction.

�

For emphasis, the map
←−
Z][·] takes proper Z](G)-filters and converts them to proper d-

subgroups of G. Evidently, H ⊆
←−
Z][Z][H]] and Z][

←−
Z][F ]] = F . Consequently, there is a

bijection between Maxd(G) and Z](G)-ultrafilters.

Corollary 4.7. Let K ∈ Cd(G) be a d-subgroup. Then g ∈ K if and only if cl intZ(g) ∈
Z][K].

Proof. The forward direction is clear by definition. Conversely, let cl intZ(g) ∈ Z][K]. This
means that there is some 0 < k ∈ K+ such that

cl intZ(k) = cl intZ(g).

Consequently, g ∈ k⊥⊥. Therefore, since K is a d-subgroup, g ∈ K. �
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Theorem 4.8. For a W-object (G, u) the space of Z](G)-ultrafilters is homeomorphic to
Maxd(G).

Proof. The bijection in question is Z][·] : Maxd(G) −→ Ult(Z](G)). A basic closed subset of
Ult(Z](G)) has the form

V(cl intZ) = {U ∈ Ult(Z](G)) : cl intZ ∈ U}
for Z ∈ Z(G). Let Z = Z(f) for 0 < f ∈ G+. Now,

←−
Z](V(cl intZ(f)) = {M ∈ Maxd(G) : Z][M ] ∈ V(cl intZ(f))

= {M ∈ Maxd(G) : cl intZ(f) ∈ Z][M ]}
= {M ∈ Maxd(G) : f ∈M}
= Maxd(G) r Ud(f)

It follows that Z][·] is a continuous bijection between the compact Hausdorff spaces Maxd(G)
and Ult(Z](G)). �

5. Coincidence and Bijections

Definition 5.1. Suppose G is an `-group and possesses a weak order unit, say 0 < u ∈ G.
Then since each minimal prime subgroup is a d-subgroup and each member of Maxd(G) is a
prime subgroup, to each P ∈ Min(G), there is a unique maximal d-subgroup d(P ) containing
P . This defines a map

d : Min(G) −→ Maxd(G).

Moreover, since each M ∈ Maxd(G) does not contain u, it follows that each M ∈ Maxd(G)
is contained in a unique value of u, denoted λdu(M). This defines a map

λdu : Maxd(G) −→ Val(u).

Observe that λu = λdu ◦ d.

Min(G)

d
&&

λu // Val(u)

Maxd(G)
λdu

99

When the situation warrants it, the subscript of u will be dropped.

Proposition 5.2. Let G be an `-group with a weak order unit. The following hold.
(a) The map d : Min(G)−1 −→ Maxd(G) is continuous.
(b) For a W-object (G, u), the map λdu : Maxd(G) −→ Y G is continuous.

Proof. For the purposes of this proof let Vd(x) = Maxd(G) r Ud(x).

(a) Let P ∈ Min(G) so that
d(P ) ∈ Ud(h),

a basic open subset of Maxd(G). To each Q ∈ Vd(h), d(P ) 6= Q and so there are disjoint
basic open subsets of Maxd(G), say Ud(tQ) and Ud(gQ), for 0 ≤ tQ, gQ, such that

Q ∈ Ud(tQ) and d(P ) ∈ Ud(gQ).
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The collection {Ud(tQ)} is an open cover of the basic closed set (and hence compact) Vd(h).
Therefore, there is a finite subcover, say {Ud(tQ1), . . . , Ud(tQn)}. Set

t = tQ1 ∨ . . . ∨ tQn and g = gQ1 ∧ . . . ∧ gQn .

Note that since ∅ = Ud(tQ) ∩ Ud(gQ) = Ud(tQ ∧ gQ), it follows that tQ ∧ gQ = 0 and hence,
t ∧ g = 0. Now, d(P ) ∈ Ud(gQ1) ∩ . . . ∩ Ud(qQn) = Ud(gQ1 ∧ . . . ∧ gQn) = Ud(g). This forces
g /∈ P , and so t ∈ P . i.e. P ∈ V (t), a basic open subset of Min(G)−1.

Now, let R ∈ Min(G) so that R ∈ V (t). If it were the case that d(R) ∈ Vd(h), then
d(R) ∈ Ud(tQi) for some i. But 0 ≤ tQi ≤ t ∈ R, yields a contradiction. So d(R) ∈ Ud(h).

What has been demonstrated is that the P ∈ V (t) ⊆ d−1(Ud(h)). This means that d is a
continuous map from the inverse topology on Min(G) to the hull-kernel topology on Maxd(G).

(b) Observe that since each maximal d-subgroup contains no weak order unit, Maxd(G) ⊆
S(u). Thus, the restriction of the continuous map µu : S(u) −→ Val(u) to the set Maxd(G)
is also continuous. This map is λud .

�

The commutative triangle at the end of Definition 5.1 can be expanded to include the
identity map i : Min(G) −→ Min(G)−1.

Min(G)
i // Min(G)−1

d
&&

λu // Val(u)

Maxd(G)
λdu

99

Next, our aim is to classify coincidence of the three sets Min(G),Maxd(G), and Val(g).
Specifically, we consider the case for a W-object. We answer this in the next result. Notice
that the last condition of the next theorem answers the question of when Z(G) = Z](G).

Theorem 5.3. The following hold for a W-object (G, u).
(a) Min(G) = Y G if and only if (G, u) is bounded away.
(b) Min(G) = Maxd(G) if and only if G is complemented.
(c) The following statements are equivalent.

(I) Maxd(G) = Y G.
(II) Every value of u contains no weak order units.

(III) There are no proper dense G-cozero-sets of Y G.
(IV) Z(G) = Z](G).

Proof. (a) This is part of Theorem 2.4.

(b) This is from [33, Remark 5.6 (d)] , where the `-groups for which Min(G) = Maxd(G)
are termed d-regular. For vector lattices, Theorem 9.5 and Remark 9.6 of [28] are useful for
comparison.

(c) Clearly, (I), by Proposition 4.3, is the same as saying each value of u is maximal with
respect to not containing any weak order unit. Therefore, (I) and (II) are equivalent.
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(II) and (III) are equivalent. If coz(g) is dense in Y G for some g ∈ G+, then g is a weak
order unit. Using (II), no value of u contains g. Hence coz(g) = Y G. Contrapositively,
suppose P ∈ Y G and there is a weak order unit g such that g ∈ P . Therefore, P ∈ Z(g).
Consequently, coz(g) is a proper dense subset of Y G.

(II) implies (IV). Let 0 < g ∈ G and let p ∈ Z(g). Suppose that p /∈ cl intZ(g). By the
Yosida Embdding Theorem, there is an 0 < f ∈ G such that f(p) = 0 and f(q) = 1 for all
q ∈ cl intZ(g). Consider Z(f ∧ g) = Z(f) ∩ Z(g). If there is some p′ ∈ intZ(f ∧ g), then
f(p′) = 0 and p′ ∈ intZ(g) . The latter implies that f(p′) = 1, a contradiction. Therefore,
intZ(f ∧ g) = ∅, i.e. f ∧ g is a weak order unit. However, by convexity of p ∈ Y G, f ∧ g ∈ p,
a contradiction. It follows that Z(g) = cl intZ(g), whence Z(G) ⊆ Z](G). Now, for any
cl intZ(g) ∈ Z](G), we have that cl intZ(g) = Z(g) ∈ Z(G), demonstrating the reverse
containment.

(IV) implies (III). Suppose Z(G) = Z](G) and let C = coz(g) be a dense cozero-set. Then,
by hypothesis, Z(g) = cl intZ(f) for some 0 ≤ f ∈ G. Taking complements means that
coz(g) = cl coz(f) so that coz(g) = Y G.

�

Remark 5.4. Theorem 5.3 (b) is true for any `-group. For a W-object (G, u) we can also
add that G is complemented if and only if Z](G) is a boolean sub-algebra of R(Y G). We
leave it to the interested reader to check this.

We now turn to classifying when the maps λu, d, and λdu are bijections. The first and third
maps will be considered in the case of W-objects while for the map d we can generalize to
arbitrary `-groups with weak order units.

Proposition 5.5. Let (G, u) be a W-object. The map λu is a bijection if and only if (G, u)
has W-stranded primes.

Remark 5.6. For some more equivalent conditions on what it means for a W-object to
have W-stranded primes we point out [8, Theorem 3.7]. A W-object (G, u) for which G has
stranded primes certainly has W-stranded primes. However, the converse is not true. Let
H = C∗(N), the set of bounded sequences, and let G =< H, i > where i is the sequence
i(n) = n. Then (G,1) has W-stranded primes, while (G, i) does not. In particular, G does
not have stranded primes.

Theorem 5.7. Let G be an `-group with a weak order unit. The following are equivalent.
(1) The map d : Min(G) −→ Maxd(G) is a bijection.
(2) G is a lamron `-group.
(3) The map d is a homeomorphism between Min(G)−1 and Maxd(G).

Proof. (1) implies (2). Suppose d is a bijection, and let P,Q ∈ Min(G) be minimal primes.
If the `-subgroup generated by P and Q, P

∨
Q, does not contain a weak order unit, then

P
∨
Q is contained in some M ∈ Maxd(G) and so d(P ) = M = d(Q). By hypothesis, P = Q.

Therefore, the convex `-subgroup generated by distinct minimal primes contains a weak order
unit. Consequently, G is a lamron `-group.

(2) implies (1). Suppose G is a lamron `-group and let d(P ) = d(Q) for P,Q ∈ Min(G).
Then

P
∨
Q ⊆ d(P )

∨
d(Q) = d(P ).
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Since d(P ) does not contain any weak order units and G is a lamron `-group, P = Q.

(2) implies (3). In the case that G is a lamron `-group, Min(G)−1 is a compact Hausdorff
space. The map d : Min(G)−1 −→ Maxd(G) is a continuous bijection between compact
Hausdorff spaces, therefore a homeomorphism.

(3) implies (1). This is obvious. �

Remark 5.8. To our knowledge, Theorem 5.7 is new in the the theory of `-groups. For
archimedean uniformly complete vector lattices, this was proved in Theorem 5.1 of [27]. The
authors were not aware of the importance of the inverse topology, but instead were interested
in properties such as the σ-interpolation property. They also show that in their set-up, the
map d is a bijection if and only if Maxd(G) is an F -space. This is not true in general. For
example, for a compact zero-dimensional Hausdorff space X, the W-object G = C(X,Z) has
the property that d is the identity map, yet Maxd(G) ∼= X need not be an F -space.

Next, a classification of when the map λdu is a bijection is in order. To state this theorem,
one must have a deeper understanding of the set Maxd(G), or equivalently, the set of Z](G)-
ultrafilters. Let p ∈ Y G and define

Fp = {cl intZ : Z ∈ Z(G) and p ∈ intZ}.
Since, if p ∈ intZ1 and p ∈ intZ2 implies

p ∈ intZ1 ∩ intZ2 = int(Z1 ∩ Z2),

it follows that for any B1, B2 ∈ Fp, then B1 ∩′ B2 ∈ Fp. Therefore, Fp is a filter base for a

filter on Z](G).

Lemma 5.9. Let U ∈ Ult(Z](G)). Then Fp ⊆ U if and only if p ∈ ∩ U .

Proof. First, suppose that p ∈ ∩ U , and let Z ′ ∈ Z(G) such that cl intZ ′ ∈ U . Let Z ∈ Z(G)
such that p ∈ intZ. Now, p ∈ cl intZ ′. For any open subset of Y G containing p, say O, then
p ∈ O ∩ intZ so that O ∩ (intZ ∩ intZ ′) = (O ∩ intZ) ∩ intZ ′ 6= ∅. It follows that

p ∈ cl int(Z ∩ Z ′) = cl intZ ∩′ cl intZ ′.

Therefore, each element of U meets each element of Fp in a non-empty set. Since U is a

Z](G)-ultrafilter, the conclusion is that Fp ⊆ U .
Second, suppose that Fp ⊆ U . If p /∈ ∩ U , then there is some Z ∈ Z(G) such that

p /∈ cl intZ. By the Yosida Embedding Theorem, there is some 0 < f ∈ G+ such that
p ∈ intZ(f) and Z(f) ∩ cl intZ = ∅. But then

∅ = cl intZ ∩′ cl intZ(f) ∈ U ,
a contradiction. �

Theorem 5.10. Let (G, u) be a W-object. The following are equivalent.
(1) The map λd : Maxd(G) −→ Y G is a bijection.
(2) The map λd : Maxd(G) −→ Y G is a homeomorphism.
(3) For each p ∈ Y G, there is a unique Z](G)-ultrafilter containing Fp.
(4) For all f, g ∈ G,

cl int(Z(f) ∩ Z(g)) = cl intZ(f) ∩ cl intZ(g).
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(5) For all f, g ∈ G, if intZ(f) ∩ intZ(g) = ∅, then

cl intZ(f) ∩ cl intZ(g) = ∅.

(6) The collection Sp = {cl intZ(f) : p ∈ cl intZ(f)} is a filter.

Proof. That (1) and (2) are equivalent uses that λd is a continuous map between two compact
Hausdorff spaces.

(1) is equivalent to (3). This is obvious since, on the one hand, λd(U) = p if and only if
p ∈ ∩ U , and on the other hand, a Z](G)-ultrafilter U satisfies p ∈ ∩ U if and only if Fp ⊆ U .

(4) implies (5). Recall that

cl intZ(f) ∩′ cl intZ(g) = cl int(Z(f) ∩ Z(g)).

Thus, if intZ(f) ∩ intZ(g) = ∅, then

cl intZ(f) ∩ cl intZ(g) = cl intZ(f) ∩′ cl intZ(g)

= cl int(Z(f) ∩ Z(g))

= cl ∅
= ∅

(5) implies (4). Clearly, cl intZ(f) ∩′ cl intZ(g) ⊆ cl intZ(f) ∩ cl intZ(g). Suppose

p ∈ cl intZ(f) ∩ cl intZ(g) and p /∈ cl int(Z(f) ∩ Z(g)).

By the Yosida Embedding Theorem, there is some Z ∈ Z(G) such that p ∈ intZ and
Z ∩ cl int(Z(f)∩Z(g)) = ∅. So in particular, we are now in position to apply the hypothesis
of (5). Now,

p ∈ cl int(Z ∩ Z(f)) and p ∈ cl int(Z ∩ Z(g)).

Applying the hypothesis yields, p ∈ cl int(Z ∩Z(f))∩ cl int(Z ∩Z(g)) = cl int(Z ∩Z(f)∩Z ∩
Z(g)). However, cl int(Z ∩Z(f)∩Z(g)) ⊆ cl intZ ∩ cl int(Z(f)∩Z(g)) = ∅, a contradiction.

(4) implies (3). Let p ∈ Y G and suppose that Fp ⊆ U1 and Fp ⊆ U2 for U1,U2 ∈
Ult(Z](G)). If U1 6= U2, then choose Z1 ∈ Z(G) such that cl intZ1 ∈ U1 r U2. Then there is
a Z2 ∈ Z(G) such that cl intZ2 ∈ U2 and

cl intZ1 ∩′ cl intZ2 = ∅.

Applying Lemma 5.9, we gather that p ∈
⋂
U1 and p ∈

⋂
U2. Therefore,

p ∈ cl intZ1 ∩ cl intZ2

= cl intZ1 ∩′ cl intZ2

= ∅,

where the first equality stems from (4). This contradiction means that U1 = U2, and hence
(3) is true.
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(3) implies (5). Let f, g ∈ G satisfy intZ(f) ∩ intZ(g) = ∅, and suppose that there is a
p ∈ cl intZ(f) ∩ cl intZ(g). Then

cl intZ(f) ∩′ cl intZ(g) = cl int(Z(f) ∩ Z(g))

= cl(int(Z(f) ∩ intZ(g))

= ∅
Let U ∈ Ult(Z](G)) be the unique ultrafilter containing Fp. Take an element of Fp, say
cl intZ with p ∈ intZ, then since p ∈ cl intZ(f) it follows that intZ ∩ intZ(f) 6= ∅ and so

cl intZ(f) ∩′ cl intZ = cl int(Z(f) ∩ Z)

= cl(intZ(f) ∩ intZ)

6= ∅
This means that the Z](G)-filter generated by Fp and cl intZ(f) is proper, and thus contained

in a Z](G)-ultrafilter. This means that cl intZ(f) ∈ U . A similar argument yields that
cl intZ(g) ∈ U . However, this cannot be since these two elements meet at ∅. Consequently,

cl intZ(f) ∩ cl intZ(g) = ∅.

(3) implies (6). Clearly, and in general, any Z](G)-ultrafilter containing Fp must contain

only elements (of the form cl intZ(f)) which contain p. Now, let U be the unique Z](G)-
ultrafilter so that {p} =

⋂
U . Thus, U ⊆ Sp. As was just pointed out in the proof of (3)

implies (5), if p ∈ cl intZ(f), then there is some Z](G)-ultrafilter, say V, such that Fp ⊆ V.
By uniqueness, cl intZ(f) ∈ V = U . Therefore, U = Sp.

(6) implies (3). If Sp is an filter, then it must be a Z](G)-ultrafilter and the unique one
containing Fp.

�

Remark 5.11. It is known that Maxd(C(X)) is always a quasi F -space, and that λd is a
bijection if and only if X is a quasi F -space. Condition (4) of Theorem 5.10 is saying that for
a W-object, the finite infimum in Z](G) is, in fact, intersection. This appears to us to be the
best possible generalization of a quasi F -space to the Yosida space of an arbitrary W-object.
This characterization of quasi F -spaces is given in [25] Theorem 2.14 (b) (ii).

6. Applications to C(X)

We consider the map d : Maxd(C(X)) −→ βX, which of course is the quasi F -cover of
βX. There are some classical types of topological spaces and covers that arise in the study
of C(X) and we investigate when Maxd(C(X)) is of one of these kinds of spaces.

Definition 6.1. Recall the following classification for a Tychonoff space X.

(ED) X is called extremely disconnected if the closure of every open subset of X is clopen.
(BD) X is called basically disconnected if the closure of every cozero-set of X is clopen.

(U) X is called a U -space if it is a strongly zero-dimensional F -space.

Every ED-space is BD, and every BD-space is a U -space. A compact Hausdorff space which
is extremelly (basically) disconnected is known as a (σ-)Stone space.
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Theorem 6.2. [20, Propositions 2.1 and 2.4] Let X be a Tychonoff space. The following are
equivalent.

(1) Maxd(C(X)) is a Stone space.
(2) Min(C(X))−1 is a Stone space.
(3) Min(C(X)) is a Stone space.
(4) X is fraction dense.
(5) Every regular closed set is the closure of cozero-set.
(6) R(X) = cl coz(X) = Z](X).
(7) βX is fraction dense.
(8) QFβX = E(βX).

Proof. Proofs for the items (4), (5), and (7) are in [20]. Clearly, (5) and (6) are equivalent.
That items (2), (3), and (4) are equivalent can be found in [34, Theorem 7.10]. The following
reference should also be mentioned: [25, Lemma 3.20]

So assume that Maxd(C(X)) is a Stone space. Then in particular, C(X) is lamron and
so Min(C(X))−1 and Maxd(C(X)) are homeomorphic. Therefore, Min(C(X))−1 is a Stone
space, i.e. (2) is true. Conversely, a fraction dense space is complemented and hence lamron
so that Min(C(X))−1 and Maxd(C(X)) are homeomorphic, whence Maxd(C(X)) is a Stone
space. �

Theorem 6.3. Let X be a Tychonoff space. The following are equivalent.
(1) Maxd(C(X)) is basically disconnected.
(2) Min(C(X))−1 is a σ-Stone space.
(3) Min(C(X)) is a σ-Stone space.
(4) X is cozero-complemented.
(5) C(X) is a complemented `-group.
(6) Z](X) is a boolean subalgebra of R(X).
(7) βX is cozero-complemented.
(8) BD(βX)2 = QF (βX).

Proof. The proof of theorem is similar to the previous proof. In either case of item (1), (2),
or (3) C(X) is complemented and thus Maxd(C(X)) and Min(C(X))−1 are homeomorphic.
If (4) holds, then that Min(C(X)) is a Stone space is an application of [23, Theorem 4.5].
See [25, Theorem 2.16] for a proof that (4) and (8) are equivalent. Two other important
references are [31] and [26]. �

Remark 6.4. For our final result recall that in [34] the author classified when Min(C(X))−1

is a boolean space, that is a compact zero-dimensional Hausdorff space. The underlying
`-group theoretic condition is that of a weakly cozero-complemented `-group: if whenever
a, b ∈ G+ with a ∧ b = 0, then there is a complementary pair 0 ≤ x, y such that a ≤ x
and b ≤ y. This was first looked at in [34] for C(X) and then for general `-groups in [30],
specifically Theorem 2.13.

Theorem 6.5. Let X be a Tychonoff space. The following are equivalent.
(1) Maxd(C(X)) is a U -space.
(2) Min(C(X))−1 is a U -space.

2BD(X) is the basically disconnected cover of Vermeer [36]
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(3) Min(C(X))−1 is a boolean space.
(4) X is weakly cozero-complemented.
(5) βX is weakly cozero-complemented.

Proof. In all three cases (1), (2), and (3), C(X) is lamron and so Maxd(C(X)) and Min(C(X))−1

are homeomorphic. Thus, if (1), then (2). Clearly, if (2), then (3). If (3), then Maxd(C(X))
is boolean, but it also is an F -space.

As just mentioned (3) and (4) are equivalent by an application of [30, Theorem 2.13]. �

Remark 6.6. All of the results in this section have counterparts for any W-object (G, u)
for which cl coz(G) = cl coz(Y G), i.e. Z](G) = Z](Y G). If this happens, then Maxd(G)
is a quasi F -space as it is homeomorphic to the quasi F -cover. Therefore, if G is lamron,
then Min(G)−1 and Maxd(G) are homeomorphic, and so any topological statement about
the space Maxd(G) will have a corresponding statement about Min(G)−1. For example, if
A is a uniformly complete vector lattice with weak unit, then cl coz(A) = cl coz(Y A) and so
it is true that Maxd(A) is a quasi F -space; Theorem 3.2 of [27] can be shortened by simply
pointing out that Maxd(A) and QF (Y A) are homeomorphic. We leave it to the reader to
show that their proof can be modified for any W-object with cl coz(G) = cl coz(Y G).

Definition 6.7. The `-group G is said to satisfy the countable polar condition if for any
countable subset of G+, say S = {gn}n∈N, there is a g ∈ G+ such that S⊥ = g⊥. (For rings,
Henriksen and Jerison [23] called this the countable annihilator condition.)

Example 6.8. Not all `-groups satisfy the countable polar condition. In fact, for a compact
zero-dimensional Hausdorff space X, C(X,Z) satisfies the countable polar condition if and
only if X is basically disconnected.

Lemma 6.9. Let (G, u) be a W-object and S ⊆ G+. If there is some g ∈ G+ such that
S⊥ = g⊥, then

cl
⋃
gi∈S

coz(gi) = cl coz(g).

And conversely.

Proof. Let p ∈ cl
⋃
gi∈S coz(gi). If p /∈ cl coz(g), then there is some h ∈ G+ such that h(p) = 1

and h(q) = 0 for all q ∈ cl coz(g). Then h ∧ g = 0 and so for all gi ∈ S, h ∧ gi = 0. This
means that for all gi ∈ S and for all t ∈ coz(gi), h(t) = 0. Let O = h−1((12 ,∞)), an open
neighborhood of p. Then O ∩

⋃
coz(gi) 6= ∅, a contradiction. Thus, p ∈ cl coz(g).

Conversely, let p ∈ cl coz(g). If p /∈ cl
⋃
gi∈S coz(gi), then again there is some h ∈ G+

such that h(p) = 1 and h(q) = 0 for all q ∈ cl
⋃
gi∈S coz(gi). It follows that h ∈ S⊥, whence

h ∈ g⊥. So coz(g) ⊆ Z(h), whence p ∈ Z(g), a contradiction. �

Proposition 6.10. The W-object (G, u) has the countable polar condition if and only if
cl coz(G) = cl coz(Y G).

Proof. Recall Lemma 2.2 of [2] which states and proves that every cozero-set in Y G is a
countable union of G-cozero-sets. So starting with a C ∈ coz(Y G), there is a countable
subset of G+, say S = {gn : n ∈ N}, such that

C =
⋃
n∈N

coz(gn).
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If G has the c.p.c., then there is some g ∈ G+ such that S⊥ = g⊥. It follows, by Lemma 6.9,
that

clC = cl
⋃
n∈N

coz(gn) = cl coz(g).

Therefore, cl coz(G) = cl coz(Y G).

Conversely, suppose that cl coz(G) = cl coz(Y G) and let S = {gn : n ∈ N} ⊆ G+. Set
C =

⋃
n∈N coz(gn), a cozero-set of Y G. By hypothesis, there is some g ∈ G+ such that

clC = cl coz(g). Then S⊥ = g⊥ and so G has the c.p.c. �
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Vol. 608. Springer-Verlag, Berlin-New York, 1977.
[10] Conrad, P. The essential closure of an Archimedean lattice-ordered group, Duke Math. J. 38 (1971) 151-

160.
[11] Conrad, P. and J. Mart̀ınez. Complemented lattice-ordered groups, Indag. Mathem., N.S. 1(3) (1990)

281–298.
[12] Darnel, M. R. Theory of Lattice-ordered Groups. Monographs and Textbooks in Pure and Applied Math-

ematics 187, Marcel Dekker, 1995.
[13] de Pagter, B. On z-ideals and d-ideals in Riesz spaces. III, Nederl. Akad. Wetensch. Indag. Math. 43(4)

(1981) 409422.
[14] Dow, A., M. Henriksen, R. Kopperman, and J. Vermeer. The space of minimal prime ideals of C(X) need

not be basically disconnected, Proc. Amer. Math. Soc. 104 (1) (1988) 317-320.
[15] Dow, A., M. Henriksen, R. Kopperman, R.G. Woods. Topologies and cotopologies generated by sets of

functions, Houston J. Math. 19 (4) (1993) 551-586.
[16] Engelking, R. General Topology, Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, Berlin,

1989.
[17] Gillman, L. and M. Jerison. Rings of Continuous Functions, Graduate Texts in Mathametics, Vol. 43,

Springer Verlag, Berlin-Heidelberg-New York, 1976.
[18] Hager, A. W., C. M. Kimber, and W. Wm. McGovern, Least integer closed groups, Ordered Algebraic

Structures, Dev. Math., 7, Kluwer Acad. Publ., Dordrecht, (2002) 245–260.
[19] Hager, A. W., C. M. Kimber, and W. Wm. McGovern. Weakly least integer closed groups, Rend. Circ.

Mat. Palermo 52 (2) (2003) 453-480.
[20] Hager, A.W. and J. Martinez. Fraction-dense algebras and spaces, Canad. J. Math. 45 (5) (1993) 977-996.
[21] Hager, A. W. and W. Wm. McGovern. The projectable hull of an archimedean `-group with weak unit,

Quast. Math. (to appear).



MAXIMAL d-SUBGROUPS AND ULTRAFILTERS 21

[22] Hager, A. W. and L. C. Robertson. Representing and ringifying a Riesz space, Symposia Mathematica,
Vol. XXI, (1977) 411-431.

[23] Henriksen, M. and M. Jerison. The space of minimal prime ideals of a commutative ring, Trans. A.M.S.
115 110–130.

[24] Henriksen, M., S. Larsen, J. Mart̀ınez, and R.G. Woods. Lattice-ordered algebras that are subdirect products
of valuation domains, Trans. Amer. Math. Soc. 345 (1) (1994) 195-221.

[25] Henriksen, M., J. Vermeer, and R. G. Woods. Quasi F -covers of Tychonoff spaces, Trans. Amer. Math.
Soc. 303 (2) (1987) 779-803.

[26] Henriksen, M. and R. G. Woods. Cozero complemented spaces; when the space of minimal prime ideals
of a C(X) is compact, Topology Appl. 141 (2004) 147-170.

[27] Huisjmans, C.B. and B. de Pagter. Maximal d-ideals in a Riesz space, Canad. J. Math. 35 (6) (1983)
1010-1029.

[28] Huisjmans, C.B. and B. de Pagter. On z-ideals and d-ideals in Riesz spaces. II, Nederl. Akad. Wetensch.
Indag. Math. 42 (4) (1980) 391-408.

[29] Knox, M. L., R. Levy, W. Wm. McGovern, J. Shapiro. Generalizations of complemented rings with
applications to rings of functions, J. Algebra Appl. 8 (2009) 17-40.

[30] Knox, M. L. and W. Wm. McGovern. Feebly projectable `-groups, Alg. Univ., 62 (1) (2009) 91–112.
[31] Levy, R. and J. Shapiro. Rings of quotients of rings of functions, 146/147 (2005) 253-265.
[32] Luxemburg, W. A. J., and A. C. Zaanen. Riesz Spaces. Vol. I. North-Holland Mathematical Library.

North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1971.
[33] Martinez, J. and E.R. Zenk When an algebraic frame is regular, Algebra Universalis 50 (2003) 231-257.
[34] McGovern, W. Wm. Neat rings, Journal of Pure and Applied Algebra 205 (2006) 243–265.
[35] Porter, J. R. and R.G. Woods, R. Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag, New

York, 1988.
[36] Vermeer, J. The smallest basically disconnected preimage of a space, Topology Appl. 17 (1984) 217-232.

1Penn State Behrend, School of Science, Erie, PA 16563
E-mail address: pxb39@psu.edu

2H. L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458
E-mail address: warren.mcgovern@fau.edu


