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Abstract. The content of a polynomial f over a commutative ring R is the ideal c(f)
of R generated by the coefficients of f . A commutative ring R is said to be Gaussian
if c(fg) = c(f)c(g) for every polynomials f and g in R[X]. A number of authors have
formulated necessary and sufficient conditions for R(X) (respectively R〈X〉) to be
semihereditary, have weak global dimension at most one, be arithmetical, or be Prüfer.
An open question raised by Glaz is to formulate necessary and sufficient conditions
that R(X) (respectively R〈X〉) have the Gaussian property. We give a necessary and
sufficient condition for the rings R(X) and R〈X〉 in terms of the ring R in case the
square of the nilradical of R is zero.

1. Introduction and Preliminaries

Let R be a commutative ring with identity and X an indeterminate. In this article
we are interested in the transference of Prüfer-like conditions between R and its Nagata
ring R(X). For a polynomial f in R[X], we let cR(f) (or simply c(f)) be the ideal of
R generated by the coefficients of f . Set S = {f ∈ R[X] : c(f) = R}, a multiplicatively
closed subset of R[X] consists of the regular elements. The Nagata ring over R is the ring
R(X) = R[X]S . Another interesting localization of R[X] is given by the multiplicatively
closed subset W = {f ∈ R[X] : f is monic}. We denote R〈X〉 = R[X]W . Denote the
classical (i.e. total) ring of quotients of a ring R by q(R), we obtain that R[X] ≤ R〈X〉 ≤
R(X) ≤ q(R[X]). Letting Max(R) denote the set of maximal ideals of R, we recall that
S = R[X] r

⋃
M∈Max(R)M [X]. Thus, S is a saturated multiplicatively closed subset of

R[X]. Therefore, the units of R(X) are precisely the fractions f/g with c(f) = c(g) = R.
The set W is not saturated, so the units of R〈X〉 are a bit more complicated to describe
(see [14], Theorem 17.10).

A natural question one might ask is what conditions on R ascend to R〈X〉 and R(X),
and conversely what conditions on R〈X〉 and R(X) descend to R. A number of authors
in the 1970’s and 1980’s have given both affirmative and negative answers to many nice
properties of domains, such as PID, UFD, Dedekind, Prüfer, etc. We are interested in
the following Prüfer-like conditions:

Definition 1.1. Let R be a commutative ring with identity

(1) R is called semihereditary if every finitely generated ideal of R is projective.
(2) R is said to have weak dimension 6 1 if every finitely generated ideal of R is flat.
(3) R is called an arithmetical ring if its lattice of ideals is distributive.
(4) R is called a Gaussian ring if for every f, g ∈ R[X], c(fg) = c(f)c(g).
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(5) R is called a locally Prüfer ring if RP is Prüfer for every prime ideal P of R.
(6) R is called a maximally Prüfer ring if RM is Prüfer for every maximal ideal of

R.
(7) R is called a Prüfer ring if every finitely generated regular ideal is invertible.

It is known that each condition implies the next. In the case of integral domains all the
conditions are equivalent. For reduced rings conditions (2), (3) and (4) are equivalent.
Furthermore, there are examples showing that the other implications cannot be reversed.
For more information on this the reader is advised to consult [2, 4, 15].

Glaz [10] and Le Riche [18] proved the following theorem for semihereditary rings.

Theorem 1.2 ([10], Corollary 3 and [18], Theorem 3.7). Let R be a commutative ring
with identity. Then:

(1) R(X) is semihereditary if and only if R is semihereditary.
(2) R〈X〉 is semihereditary if and only if R is semihereditary and has Krull dimen-

sion at most one.

Le Riche [18] and Anderson, Anderson and Markanda [1] proved the following theorem
for arithmetical rings.

Theorem 1.3 ([1], Theorem 3.1). Let R be a commutative ring with identity.

(1) R(X) is an arithmetical ring if and only if R is an arithmetical ring.
(2) R〈X〉 is an arithmetical ring if and only if R is an arithmetical ring, dimR ≤ 1,

and RP is a field for every non-maximal prime ideal P .

An interesting property of the ring R(X) is that any finitely generated locally principal
ideal is principal ([14], Theorem 15.4). Since arithmetical rings can be characterized as
the locally chained rings ([16], Theorem 1), we gather that R(X) is arithmetical if and
only if it is a Bézout ring. Recall that a Bézout ring is one in which every finitely
generated ideal is principal. A Bézout ring is arithmetical. In [1] the authors introduced
a new class of Prüfer rings: the strong Prüfer rings. A ring is called a strong Prüfer ring
if every finitely generated ideal I with AnnR I = 0 is locally principal. With the notion
of strong Prüfer rings the authors also established a theorem for Prüfer rings analogous
to Theorem 1.2 and Theorem 1.3. Note that an arithmetical ring is strong Prüfer ring,
while a strong Prüfer ring is a Prüfer ring.

Theorem 1.4 ([1], Theorem 3.2). Let R be a commutative ring. Then:

(1) R(X) is a strong Prüfer ring if and only if R is a strong Prüfer ring.
(2) R〈X〉 is a strong Prüfer ring if and only if R is a strong Prüfer ring, dimR ≤ 1,

and RP is a field for every non-maximal prime ideal P .

We note that any finitely generated ideal I of R(X) (or R〈X〉) with Ann I = 0 is
regular. Therefore, R(X) (or R〈X〉) is a strong Prüfer ring if and only if it is a Prüfer
ring.

In this paper we derive analogous results for the class of Gaussian rings in which the
square of the nilradical is zero and also for maximally Prüfer rings. In Section 3 we recall
the definition of a p-extension and characterize when each of the extensions R ≤ R(X)
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and R ≤ R〈X〉 is a p-extension. Finally, in section 4 we apply the notion of p-extension
to the Prüfer-like conditions.

Throughout the paper all rings are commutative with identity. For a ring R, we
let Z(R) denote the set of zerodivisors of R, and denote the nilradical of R by N(R).
When useful and unambiguous we shall denote the ideal generated by a finite set using
parentheses, e.g. (a, b).

For an extensive treatment of R(X) and R〈X〉, the book by Huckaba [14] and the
articles [1] and [18] are very informative. We end this section by stating some results
that we have found useful.

Theorem 1.5 ([14], Theorem 14.1). Let R be a commutative ring with identity. The
following statements hold.

(1) There is a one-to-one correspondence between the maximal (resp. minimal) prime
ideals of R and the maximal (resp. minimal) prime ideal ideal R(X) given by
P ↔ PR(X) = P (X).

(2) For an ideal I of R, I(X) ∩R = I, and R(X)/I(X) = R/I(X).
(3) For each prime ideal P of R, RP (X) = R[X]P [X] = R(X)P (X).

Theorem 1.6 ([14], Theorem 17.11). The rings R(X) and R〈X〉 coincide if and only if
dimR = 0.

Theorem 1.7 ([14], Theorem 15.1). Let R be a ring and f ∈ R[X]. The following
conditions are equivalent:

(1) c(f) is locally principal.
(2) fR(X) = c(f)R(X).
(3) fR(X) = IR(X), for some ideal I of R.
(4) c(f)R(X) is principal.
(5) c(f)R(X) is locally principal.

2. Gaussian Property of the rings R(X) and R〈X〉

In this section we partially answer a question of Sarah Glaz ([8], Open question 10).
For the class of rings in which the square of the nilradical is zero, we prove a theorem
similar to Theorem 1.4 for Gaussian rings. We consider such rings for obvious reason,
as reduced Gaussian rings are arithmetical ([9], Theorem 2.2), and for arithmetical rings
the relation between the ring R and the rings R(X) and R〈X〉 is completely understood.
We begin with the following known results.

Theorem 2.1 ([19], Theorem 3.5). Let R be a local ring. Then R is Gaussian if and
only if (i) for all a, b ∈ R, (a, b)2 is principal and generated by either a2 or b2 and (ii)
for all a, b ∈ R with (a, b)2 = (a2), if ab = 0, then b2 = 0.

Theorem 2.2 ([19], Theorem 3.3). Let R be a commutative ring such that N(R)2 = (0).
Then R is Gaussian if and only if R/N(R) is arithmetical and for each finitely generated
ideal I not contained in N(R) and each nilpotent b ∈ N(R), bI ⊆ I2.

We are now ready to present our first result.
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Theorem 2.3. Let R be a ring such that N(R)2 = (0). Then R is Gaussian if and only
if R(X) is Gaussian.

Proof. First note that being Gaussian is a local property, i.e., R is Gaussian if and only
if RM is Gaussian for each maximal ideal M of R ([23], Lemma 5). Also, since maximal
ideals of R and R(X) are in one-to-one correspondence and R(X)M(X) = RM (X) by
Theorem 1.5, it suffices to consider the case when R is local.

(⇒) Assume R is a local Gaussian ring such that N(R)2 = 0. Since the prime ideals of
a Gaussian ring are linearly ordered by inclusion ([24], Theorem 6.1), N(R) is the unique
minimal prime ideal of R. Also, the minimal prime ideals of R and R(X) are in one-
to-one correspondence (P ↔ P (X)), so the nilradical of R(X) is N(R)(X). Moreover,
N(R)(X)2 = 0.

Set R̄ = R/N(R) and for x ∈ R set x̄ = x+N(R). Since the homomorphic image of a
Gaussian ring is Gaussian and a reduced Gaussian ring is arithmetical, R̄ is arithmeti-
cal, and so is R̄(X) = R(X)/N(R)(X) by Theorem 1.3. We prove that the necessary
condition of Theorem 2.2 is satisfied by the ring R(X). Note that it suffices to prove the
condition for the principal ideals. Let f = a0 + a1X + ...+ anX

n ∈ R[X] \N(R)[X] and
p = p0 + p1X + ...+ pmX

m ∈ N(R)[X]. We claim the following

p · fR(X) ⊆ f2R(X).

That R̄ is arithmetical implies (c(f) + N(R))/N(R) is a principal ideal of R. We
may assume (c(f) + N(R))/N(R) = akR/N(R). Then for each i there are ri ∈ R and
bi ∈ N(R) such that ai = akri + bi. Of course, we can take rk = 1 and bk = 0, and we
do so. Therefore, f = akf0(X) + b(X), where f0(X) = r0 + r1X + ...+ 1Xk + ...+ rnX

n

and b(X) = b0 + b1X + ... + 0Xk + ... + bnX
n ∈ N(R)[X]. Thus, p · f = akf0 · p,

because b · p ∈ N(R)2[X] = 0. Since R is Gaussian, by Theorem 2.2, ps · ak = a2k · ts
for some ts ∈ R. It then follows that, ts ∈ N(R). Therefore, ak · p(X) = a2kt(X), where

t(X) = t0+t1X+...+tmX
m, and hence f ·p = f0·a2kt(X) = (a2kf

2
0 +2akf0(X)b(X))· t(X)

f0(X) ,

again because b(X) · t(X) ∈ N(R)2[X] = 0. Thus,

p · fR(X) ⊆ f2R(X)

as desired.

(⇐) Assume R(X) is a Gaussian ring. Let a, b ∈ R. Then by Theorem 2.1 we may
assume that (a, b)2R(X) = a2R(X). Therefore, b2h0 = a2h1 and abg0 = a2g1 for some
h0, h1, g0, g1 ∈ R[X] with c(h0) = c(g0) = R. It follows that (a, b)2R = a2R. Also, if
ab = 0, then b2 = 0 in R(X), and hence b2 = 0 in R as well. �

Remark 2.4. Notice that the proof of the sufficiency does not use the extra condition
that the square of the nilradical of R is zero.

Theorem 2.5. Let R be a commutative ring such that N(R)2 = (0). Then R〈X〉 is
Gaussian if and only if R is Gaussian, dim R ≤ 1, and RP is a field for every non-
maximal prime ideal P .
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Proof. (⇒) Assume R〈X〉 is a Gaussian ring. R(X), being an overring of a Gaussian ring
is also a Gaussian ring ([2], Theorem 3.3 ), and by Theorem 2.3, R is also Gaussian. Since
Gaussian rings are Prüfer rings, other conclusions immediately follow from Theorem 1.4.

(⇐) Assume R satisfies the stated conditions. As noted in Theorem 2.3, it suffices to
prove that R〈X〉 is locally Gaussian at each maximal ideal. Let m be a maximal ideal
of R〈X〉. Let M = m ∩R[X], and P = M ∩R. Then by ([14], Theorem 18.2)

R〈X〉m = R[X]M = RP [X]MRP [X].

Now we have two cases to consider. If P is not a maximal ideal of R, then RP [X]MRP [X]

is a DVR or a field, and hence it is a Gaussian ring.
If P is maximal, then either M = P [X] or M = (P [X], f) for some monic polynomial

f ∈ R[X]. Since M extends to the maximal ideal m of R〈X〉, we cannot have the latter
case. So,

R〈X〉m = R[X]M = R[X]P [X] = RP (X).

Finally, since nilradicals localize nicely, the result follows from Theorem 2.3. �

Remark 2.6. We do not know whether the condition that N(R)2 = 0 can be dropped.
Neither do we know of an example of a Gaussian ring R such that N(R)2 6= 0 and R(X)
is not Gaussian. However, there are Gaussian rings with the square of the nilradical
nonzero, for example k[X]/(X3), but this ring is an arithmetical ring therefore R(X) is
arithmetical, and hence also a Gaussian ring. We have been able to construct an example
of a nonarithmetical Gaussian ring whose nilradical squared is nonzero, for example the
ring R = k[Y ]/(Y 3) (+) (k⊕k) has the property, but again in this case R(X) is Gaussian.

We now give a similar result for maximally Prüfer rings. A commutative ring R is
said to be maximally strong Prüfer (locally strong Prüfer) if RM is a strong Prüfer ring
for every maximal (prime) ideal M of R [15].

Theorem 2.7. Let R be a commutative ring with identity. Then:

(1) R(X) is maximally Prüfer if and only if R is maximally strong Prüfer.
(2) R〈X〉 is maximally Prüfer if and only if R is maximally strong Prüfer, dim

R ≤ 1, and RP is a field for every non-maximal prime ideal P of R.

Proof. (1) Since maximal ideals of the rings R and R(X) are in one-to-one correspon-
dence, R(X) is maximally Prüfer if and only if R(X)M(X) = RM (X) is Prüfer for every
maximal ideal M of R. By Theorem 1.4, RM (X) is Prüfer if and only if RM is strong
Prüfer. Now the result follows.

(2)(⇒) R(X), being an overring of a maximally Prüfer ring, is also a maximally Prüfer
ring ([15], Corollary 10). Therefore, by (1) R is maximally strong Prüfer. Since maxi-
mally Prüfer rings are Prüfer, other results follow from Theorem 1.4.
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(⇐) Let m be a maximal ideal of R〈X〉. Then m = MR〈X〉 for some prime ideal M
of R[X] that is disjoint from the set of monic polynomials of R[X]. Let P = M ∩ R.
Again we have,

R〈X〉m = R[X]M = RP [X]MRP [X].

If P is a maximal ideal of R then either M = P [X] or M = (P [X], f) for some monic
polynomials f of R. But latter case cannot occur. Thus, R〈X〉m = R[X]M = R[X]P [X] =
RP (X) is Prüfer. If P is a not a maximal ideal of R, then R〈X〉m = RP [X]MRP [X] is
the localization of a PID, and hence Prüfer. �

Unfortunately, we have been unable to characterize when R(X) is locally Prüfer. On
the positive side, we note that a similar result of Theorem 2.7 (2) also holds for the
locally Prüfer rings, and the proof is also the same.

Theorem 2.8. Let R be a commutative ring with identity. Then: R〈X〉 is locally Prüfer
if and only if R is locally strong Prüfer, dim R ≤ 1, and RP is a field for every non-
maximal prime ideal P .

3. When R(X) and R〈X〉 are p-extensions of R

In this section we recall the notion of a p-extension of rings, and determine when the
extensions R ⊂ R(X) and R ⊂ R〈X〉 are such.

Definition 3.1. Let R and S be commutative rings with identity; denote the identities
of R and S by 1R and 1S respectively. Formally, by an extension of rings we mean
that there is injective morphism of rings, say φ : R 7→ S for which φ(1R) = 1S . In this
manner we assume that R is a subring S, and we say that S is a p-extension of R if,
for each s ∈ S, there exists r ∈ R such that sS = rS [3]. For example, localizing a ring
at a regular multiplicatively closed set is a p-extension. Whereas R ⊆ R[X] is never a
p-extension.

Theorem 3.2. Let R be a commutative ring. R ↪→ R(X) is a p-extension if and only if
R is a Bézout ring.

Proof. Assume R ↪→ R(X) is a p-extension. For a, b ∈ R, we have (aX + b)R(X) =

rR(X) for some r ∈ R. Write r = (aX + b) · fg , which implies rg = (aX + b)f . Since g

has unit content, rR ⊆ c((aX + b)f) ⊆ (aR + bR)c(f) ⊆ aR + bR. On the other hand,
(aX+b) = r · hk implies (aX+b)k = rh. Now content formula (c(f)nc(fg) = c(f)n+1c(g),
where n = deg (g)) yields that c((aX + b)k) = aR+ bR. Therefore, aR+ bR ⊆ rR, and
so aR+ bR = rR. Hence R is a Bézout ring.

Conversely, assume that R is a Bézout ring. Let f ∈ R[X]. By Theorem 1.7, fR(X) =
cR(f)R(X) if and only if cR(f) is locally principal. Since R is Bézout c(f) is principal,
and hence locally principal. Therefore fR(X) = rR(X) for some generator r of cR(f).

�

The argument of Theorem 3.2 also proves that a necessary condition for the extension
R ↪→ R〈X〉 to be a p-extension is that R is Bézout. But the condition is far from being
sufficient. In fact, if R〈X〉 ( R(X), which is the case when dim R 6= 0 ([14], Theorem
17.11), then R ↪→ R〈X〉 is never a p-extension, which we now prove. First, we need a
few lemmas.
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Lemma 3.3. Let R be a ring. If R ↪→ R〈X〉 is a p-extension, then R is a total quotient
ring.

Proof. Let a be a regular element of R. Assume that

(aX + 1)R〈X〉 = rR〈X〉

for some r in R. Therefore

(aX + 1) = r · f
g

and r = (aX + 1) · h
k

which implies

(aX + 1) · g = r · f and r · k = (aX + 1) · h
where f and h are polynomials over R, and g and k are monic polynomials over R.
Writing f = anX

n + ...+ a1X + a0 and h = bmX
m + ...+ b1X + b0 and comparing the

coefficients of leading terms we get a = ran and r = abm. It follows that r is a regular
element of R, and an and bm are units of R. Regularity of r implies that degree of g is
n−1. Again, writing g = Xn−1+cn−2X

n−2+...+c1X+c0 and comparing the coefficients
of Xn−1 gives 1 + acn−2 = abman−1, which implies that a is a unit of R. Thus, every
regular element of R is a unit. Therefore, R is a total quotient ring. �

The following two lemmas prove that a p-extension is stable under localization and
reducing modulo an ideal for the inclusion R ↪→ R〈X〉.

Lemma 3.4. If R ↪→ R〈X〉 is a p-extension, then RP ↪→ RP 〈X〉 is also a p-extension,
for any prime ideal P of R.

Proof. Let P be a prime ideal of R, and let f be a polynomial in RP [X]. We can write
f = g

t where g ∈ R[X] and t ∈ R − P . Since R ↪→ R〈X〉 is a p-extension, we have
gR〈X〉 = rR〈X〉 for some r ∈ R. Therefore, g · h = r.k for some polynomials h and k in
R[X], with h monic. Dividing by t gives f · h = r

t · k, an equation in RP [X]. It follows
that fRP 〈X〉 ⊆ rRP 〈X〉.

On the other hand, writing r ·k′ = h′ ·g with k′ monic polynomial in R[X] and dividing
by t gives r

t · k
′ = h′ · gt . Therefore, r

tRP 〈X〉 ⊆ fRP 〈X〉. Thus, fRP 〈X〉 = rRP 〈X〉 �

Lemma 3.5. If R ↪→ R〈X〉 is a p-extension, then R/I ↪→ R/I〈X〉 is also a p-extension
for any ideal I of R.

Proof. Let f̄ ∈ R/I[X]. Since R ↪→ R〈X〉 is a p-extension, we have fR〈X〉 = rR〈X〉,
for some r ∈ R. It follows that f · g = r · h for some polynomials h and g in R[X] with g
monic. Reducing the polynomials modulo I, we get f̄ · ḡ = r̄ · h̄. Since monic polynomials
stay monic under reducing modulo an ideal we have f̄R/I〈X〉 ⊆ r̄R/I〈X〉.

A similar argument shows that, r̄R/I〈X〉 ⊆ f̄R/I〈X〉. Thus, r̄R/I〈X〉 = f̄R/I〈X〉
�

Theorem 3.6. R ↪→ R〈X〉 is a p-extension if and only if R is a zero-dimensional Bézout
ring.
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Proof. (⇒) The discussion after Theorem 3.2 shows that R is a Bézout ring. Let P be a
prime ideal of R. By Lemma 3.5 and Lemma 3.4, we have RP /N(RP ) ↪→ RP /N(RP )〈X〉
is a p-extension. Now by Lemma 3.3 RP /N(RP ) is a total quotient ring. On the other
hand since R is Bézout, the ring RP /N(RP ), being a reduced chained ring, is an integral
domain. Therefore, it is a field. It follows that dim RP = 0. Since P is an arbitrary
prime ideal of R, dim R = 0.

(⇐) Since R is zero-dimensional, R〈X〉 = R(X) by ([14], Theorem 17.11). Now the
result follows from Theorem 3.2. �

4. p-extensions and Prüfer-like conditions

In this section we prove that, of the Prüfer-like conditions discussed in the introduc-
tion, all except maximally Prüfer ring ascend through p-extension, i.e. if R ⊆ S is a
p-extension and R satisfies the condition n for n = 1, 2, 3, 4, 5, 7 of the introduction, then
S satisfies condition n as well. First we need a couple of lemmas.

Lemma 4.1. Suppose R ↪→ S is a p-extension and Q is a prime ideal of S. If P = Q∩R,
then RP ↪→ SQ is also a p-extension.

Proof. We first prove that the natural map RP −→ SQ is one-to-one. Let a
t ∈ RP , and

assume a
t = 0 in SQ. Then au = 0 for some u ∈ S − Q. But Su = Sr for some r ∈ R,

so ra = 0. Also, since u /∈ Q, we have r /∈ P . Therefore, a
t = 0 in RP . Now consider a

principal ideal a
wSQ where a ∈ S, w ∈ S−Q. Again aS = bS for some b ∈ R. Therefore,

a
wSQ = b

1SQ and hence RP ↪→ SQ is a p-extension. �

Lemma 4.2. Suppose R ↪→ S is a p-extension. Then following hold:

(1) If R is a field then so is S.
(2) If R is a von Neumann regular ring then so is S.
(3) If R is a chained ring then so is S.
(4) If R is reduced then so is S.

Proof. (1) Let s be a nonzero element of S. Then sS = rS for some nonzero element r
in R. Therefore, since r is invertible in R we have r−1sS = S. Thus r−1s, and hence
also s, is a unit of S.

(2) By ([5], Theorem 1), it suffices to prove that SM is a field for all maximal ideals
M of S. Let M be a maximal ideal of S and let P = M ∩R. By Lemma 4.1, RP ↪→ SM
is also a p-extension. Let Q be a maximal ideal of R that contains P , then we have
the isomorphism RP

∼= (RQ)PRQ
. Since RQ is a field by ([5], Theorem 1) we have

PRQ ⊆ QRQ = 0. Therefore RP = RQ. Thus SM is a field by (1).
(3) To prove that S is a chained ring, it suffices to prove that any two principal ideals

are comparable. Let cS and dS be two principal ideals of S. Then there exist p and q
in R such that cS = pS and dS = qS. Without loss of generality, assume pR ⊆ qR. It
follows that, cS ⊆ dS. Thus S is a chained ring.

(4) Let s be a nilpotent element of S. We have sS = rS for some r in R. This implies
that r = st for some t in S. Therefore, r is a nilpotent element of R, so r = 0, and hence
s = 0. �
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Theorem 4.3. Suppose R ↪→ S is a p-extension. If R satisfies the condition (n) for
n = 1, 2, 3, 4, 5, 7 of the introduction, then S satisfies the same condition (n).

Proof. (7) It suffices to prove that every two-generated regular ideal of S is invertible
([17], Theorem 10.18). Let I = Ss1 +Ss2 be a regular ideal of S. Let a ∈ I be a regular
element of I. There exists r1 and r2 in R such that Ss1 = Sr1 and Ss2 = Sr1, and
Sa = Sr. Then r is also a regular element of R.

Let I0 = Rr1+Rr2+Rr. Clearly, I0 is a regular ideal of R and I0S = Sr1+Sr2+Sr =
I. Since R is a Prüfer ring, there exists an ideal J0 of R such that I0J0 = Rc for some
regular element c ∈ R. Therefore, (I0S)(J0S) = Sc. i.e., I is invertible in S. Thus S is
also Prüfer.

(5) Follows from (7) and Lemma 4.1.
(4) Since a commutative ring R is Gaussian if and only if RP is Gaussian for every

prime ideal of R. We may assume that R and S are local rings. By Tsang’s characteriza-
tion of local Gaussian rings, we have to prove that given two elements a and b in S there
exists d ∈ AnnS(Sa+Sb) such that Sa+Sb = Sa+Sd or Sa+Sb = Sb+Sd. There are
r1 and r2 in R such that Sa = Sr1 and Sb = Sr2. Since R is a local Gaussian ring we can
assume without loss of generality that Rr1+Rr2 = Rr1+Rd where d ∈ AnnR(Rr1+Rr2).
Now it is easy to verify that Sa+ Sb = Sa+ Sd and d ∈ AnnS(Sa+ Sb).

(3) It suffices to prove that the lattice of ideals of SQ at any prime ideal Q of S is
linearly ordered. Let P = Q∩R. Then P is a prime ideal of R. Since R is arithmetical,
the lattice of ideals of RP are linearly ordered ([16], Theorem 1), and so is true for SQ
by Lemma 4.1 and Lemma 4.2 (3).

(2) By ([9], Theorem 2.2) it suffices to prove that S is a reduced Gaussian ring, and
this immediately follows from (3) Lemma and 4.2 (4).

(1) By ([9], Theorem 2.3) it suffices to prove that S is Gaussian and Q(S) is a von
Neumann regular ring. Since R is semihereditary, it is Gaussian and Q(R) is von Neu-
mann regular. It is easy to check that Q(R) ↪→ Q(S) is a p-extension. Therefore, S is
Gaussian and Q(S) is a von Neumann regular ring. �

Remark 4.4. It is an open problem whether a p-extension of a maximally Prüfer ring
is also a maximally Prüfer ring.

References

[1] Anderson, Anderson, Markanda, The rings R(X) and R〈X〉, J Algebra 95, 96-115 (1985).
[2] S. Bazzoni and S. Glaz, Gaussian properties of total rings of quotient, J Algebra 310, 180-193 (2007).
[3] P. Bhatacharjee, M.L. Knox, W. Wm. McGovern, p-extensions, Contemporary Mathematics, to

appear.
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