Name:

Exam 1– MAS 4301H Fall 2019

Remark: Throughout the test n denotes a positive integer greater than 1. We consider the group $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ under addition.

If you need to contact me my number is 419-494-9568; text me.

1. Definitions:
 (a) State the definition of a group.

 (b) What does it mean for the group (G, \cdot, e) to be an *abelian* group?

 (c) What does it mean for the group (G, \cdot, e) to be a *cyclic* group?

 (d) The center of a group is

 \[
 Z(G) = \{ \}
 \]

 (e) List the elements of $U(14) = \{}$

 (f) For a group G and $g \in G$, define the *order of g* $o(g)$

2. True or false:
 i. Every subgroup of a cyclic group is cyclic.

 ii. Every group of order p (prime) is cyclic.

 iii. Given a group G, the subset of elements of finite order is a subgroup of G.

 iv. For a group G and $a, b \in G$, $(ab)^{-1} = a^{-1}b^{-1}$.

 v. If $\sigma \in S_n$ is a k-cycle and $\tau \in S_n$ is a j-cycle, then $o(\sigma \circ \tau) = l.c.m(j, k)$.

3. Give an example of an abelian group which is not cyclic.
4. State Lagrange’s Theorem

5. Explain why S_3 is not abelian. [Hint: just need a counter-example.]

6. Let $G = S_4$ and set $r = (1\ 2\ 3\ 4)$ and $s = (24)$.

 i) Find the cycle decomposition of $s \circ r \circ s^{-1}$.

 ii) List the elements of $<r>$. What is the order of r?

7. Let $G = S_3$ and set $\sigma = (1\ 2\ 3)$.

 i) What is $o(\sigma)$?

 iii) List the elements of $\text{Conj}(\sigma)$. Show your work. [Hint: you may use that $o(h) = o(ghg^{-1})$.]

8. Draw the lattice of subgroups of $\mathbb{Z}/12$.
9. Let \((G, \cdot, e_G)\) be a group, \(H \leq G\) and take a fixed \(g \in G\). Prove that if \(x \in gH\), then \(xH = gH\).

10. Let \((G, \cdot, e_G)\) be a group, \(H \leq G\) and take a fixed \(g \in G\). Prove that the function

\[
\psi : H \to gHg^{-1}
\]

defined by \(\psi(h) = ghg^{-1}\) is one-to-one.

11. How many rigid motions are there for a regular octahedron? Take a guess: what is the group of symmetries of the regular octahedron. [Hint: there is a rigid motion which will map any vertex to any other vertex.]
12. Choose one of the following and prove it. Let G be a group, $H \leq G$ and $g \in G$.
 i. The centralizer of g, $C_G(g) = \{x \in G : xgx^{-1} = g\}$ is a subgroup of G.
 ii. If $\{H_i\}_{i \in I}$ is a family of subgroup of G, then $\bigcap H_i$ is a subgroup of G.
 iii. The cyclic subgroup generated by $g < g > = \{x \in G : \exists n \in \mathbb{Z}, x = g^n\}$, is a subgroup of G.
 iv. The set gHg^{-1} is a subgroup of G.
 v. for any $s \in \{1, \ldots, n\}$, the set $G_s = \{\sigma \in S_n : \sigma(s) = s\}$ is a subgroup of S_n.