1. Compute the determinant of the following 4×4 matrix. [Hint: look for 0s.]

$$H = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 0 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & -2 & 2 \end{pmatrix}.$$

2. Suppose $A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 4 & -1 \\ -1 & 2 & 0 \end{pmatrix}$ and its characteristic polynomial is $c_A(x) = (x - 1)(x - 2)^2$.

(a) What are the eigenvalue(s) of A and what are their algebraic multiplicities?

(b) Compute $2I_3 - A$.

(c) Find a basis for the eigenspace E_2 corresponding to the eigenvalue $\lambda = 2$.

(d) What is the geometric multiplicity of $\lambda = 2$?

(e) Is A diagonalizable? Explain.
3. Let \(B = \begin{pmatrix} 4 & h \\ 2 & -3 \end{pmatrix} \).

For which value of \(h \) makes \(B \) an idempotent matrix? (If you do not know what that means you may ask me but I will write down that you did not know...and you will lose 25\% of the possible points.)

4. Let \(T : \mathbb{R}^2 \to \mathbb{R}^3 \) be the function defined by
\[
T((x, y)) = (x - 2y, 2x + y, y - x).
\]

(a) Prove that \(T \) is a linear transformation.

(b) Compute the matrix representation \(A_T \) of \(T \).
5. Let V be the subspace of \mathbb{R}^3 spanned by the set \{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \}. Find a basis for V and determine the dimension of V.

6. Consider the following system of equations. Determine whether the system is consistent. If so, give a specific example of a solution.

\[
\begin{align*}
 x + 2y + 2z &= 2 \\
 -x + 2y &= 1 \\
 2y + z &= 1
\end{align*}
\]
7. Let \(T : \mathbb{R}^3 \to \mathbb{R}^4 \) be the linear transformation defined by \(T(v) = A \cdot v \) for each \(v \in \mathbb{R}^3 \) where

\[
A = \begin{pmatrix}
2 & 1 & 4 \\
3 & -1 & 11 \\
1 & 0 & 3 \\
4 & 3 & 6
\end{pmatrix}
\]
and \(\text{rref}(A) = \begin{pmatrix}
1 & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \)

(a) Are the column vectors of \(A \) linearly independent? Explain.

(b) Find a basis for \(\text{range}(T) \) and determine the dimension of \(\text{range}(T) \).

8. Suppose \(A \) is a \(4 \times 4 \) matrix and \(c_A(x) \) factors into the nice form

\[c_A(x) = (x + 1)(x - 2)(x - 1)^2. \]

You also know that \(\beta_1 = \{ \begin{pmatrix} 1 \\ 3 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 3 \\ 1 \end{pmatrix} \} \) is a basis for \(E_1 \), \(\beta_2 = \{ \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix} \} \) is a basis for \(E_2 \), and \(\beta_{-1} = \{ \begin{pmatrix} 2 \\ -2 \\ 3 \\ 1 \end{pmatrix} \} \) is a basis for \(E_{-1} \).

(a) Is \(A \) diagonalizable? If so, construct a \(P \) so that \(P^{-1}AP = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{pmatrix} \).

(b) Is \(A \) invertible? Why or why not?
9. Let A be a $m \times n$ matrix. Give a brief explanation of how to find a basis for the kernel of A, $\ker A$. For which previous problem in this test were you asked to do this?

10. Let A be a $m \times n$ matrix. Give a brief explanation of how to find a basis for the column space, $\text{Col}(A)$. For which previous problem in this test were you asked to do this?

11. Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation with matrix representation A_T. Give a brief explanation of how to determine whether the vector $\vec{b} \in \mathbb{R}^n$ is in the range of T, $\text{range}(T)$. For which previous problem in this test were you asked to do this?

12. Let $0 \leq \theta < 2\pi$. Explain why the matrix $E = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ is invertible. Find the inverse of the matrix.
13. Let \(V = \{ (x, y, z) \in \mathbb{R}^3 : 2x + 3y - z = 0 \} \). Prove that \(V \) is a subspace of \(\mathbb{R}^3 \). What is the dimension of \(V \). Find a basis.

14. True or False:
(a) \(\mathbb{R}^2 \) is a subspace of \(\mathbb{R}^3 \).
(b) Let \(T : \mathbb{R}^4 \to \mathbb{R}^2 \) be a linear transformation. It is not possible for \(T \) to be onto/surjective.
(c) An \(n \times n \) matrix is invertible if and only if it is singular.
(d) Let \(A \) be a \(m \times n \) matrix. If the kernel of \(A \) is trivial, then \(n \leq m \).
(e) If a subset of \(\mathbb{R}^n \) is linearly dependent, then the set contains more than \(n \) vectors.
(f) The vector equation \(0 = \alpha_1 \vec{v}_1 + \cdots + \alpha_k \vec{v}_k \) has a unique solution if and only if the set of vectors \(\{ \vec{v}_1, \ldots, \vec{v}_k \} \) is linearly independent.
(g) Let \(A \) be a \(n \times n \) matrix. The eigenvalues of \(A \) are the diagonal entries of \(A \).
(h) The permutation \((1 \ 2 \ 3 \ 4)(5 \ 6) \) is even.
(i) Every singular \(n \times n \) matrix has an eigenvalue.
(j) If \(\vec{v} \) is a vector such that \(A\vec{v} = 2\vec{v} \), then \(\vec{v} \) is an eigenvector for \(A \).
(k) \((1 \ 2 \ 4 \ 3) \circ (1 \ 2) = (2 \ 4 \ 3) \).
(l) If \(c_A(x) = (x^2 - 1)(x^2 - 4) \), then \(A \) is diagonalizable.
(m) Let \(\vec{0} \neq \vec{u} \in \mathbb{R}^3 \). The set \(\{ \vec{v}, \vec{u} \} \) is linearly independent if and only if \(\vec{u} \) is not on the line through the origin and \(\vec{v} \).
(n) The set \(\{ \vec{0} \} \) is a basis for the subspace \(\{ \vec{0} \} \).
15. Match the matrices below with the appropriate notation for an elementary matrix. The idea is the matrices below are on the left side of a matrix product XA where you substitute the matrices below in for X.

(a) $F = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

(b) $G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$

(c) $H = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

(d) $J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \alpha \end{pmatrix}$

(e) $K = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \alpha \\ 0 & 0 & \beta \end{pmatrix}$

(f) $L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \beta & \alpha \\ 0 & 0 & 1 \end{pmatrix}$

i. $D_3(\alpha) =$

ii. $S_{1,2} =$

iii. The matrix that places $\beta R_2 + \alpha R_3$ into row 2.

16. **Extra Credit.** Recall that $[-1,1] = \{x \in \mathbb{R} : -1 \leq x \leq 1\}$. Let $C([-1,1])$ be the set of continuous real-valued functions $f : [-1,1] \to \mathbb{R}$. $C([-1,1])$ is a vector space under the following addition and scalar multiplication: for all $f,g \in C([-1,1])$ and $\alpha \in \mathbb{R}$, and for all $x \in [-1,1]$

$$(f + g)(x) = f(x) + g(x) \text{ and } (\alpha \cdot f)(x) = \alpha \cdot f(x).$$

Recall that a function is called even if for all $x \in [-1,1]$, $f(-x) = f(x)$. Prove that the set

$W = \{f \in C([-1,1]) : f \text{ is even}\}$

is a subspace of $C([-1,1])$.
17. Extra Credit How many 2×2 matrices with entries in \mathbb{Z}_5 are there? Of these how many are invertible. [Hint: Think of $A = (\vec{v}_1 \vec{v}_2)$ with non-zero vector \vec{v}_1 and for A to be invertible what do you know about \vec{v}_2.]

18. Extra Credit This is over \mathbb{Z}_5. For what values of h makes the following matrix diagonalizable?

$$A = \begin{pmatrix} 1 & 2 \\ 3 & h \end{pmatrix}$$