Directions: Make sure to show all necessary work to receive full credit. If you need extra space please use the extra blank sheet with appropriate labeling.

1. True/False
 (a) True or False: If for some matrix \(A \), and some vectors \(\vec{x}, \vec{b} \), we have \(A\vec{x} = \vec{b} \), then \(\vec{b} \) is in the span of the column vectors of \(A \).

 (b) True or False: In \(\mathbb{Z}_5 \), every element has a multiplicative inverse.

 (c) True or False. The homogeneous equation \(A\vec{x} = \vec{0} \) always has a solution.

 (d) True or False: A \(m \times n \) matrix has \(n \) columns.

 (e) True or False: In \(\mathbb{Z}_{12} \), the number 2 has a multiplicative inverse.

 (f) True or False: The determinant of a square matrix \(A \) is nonzero if and only if the equation \(A\vec{x} = \vec{0} \) has a unique solution.

2. Definitions
 (a) Suppose \(V \) and \(W \) are \(\mathbb{F} \)-vector spaces. State what it means for the function \(T: V \rightarrow W \) to be a linear transformation.

 (b) State the definition of \(\text{Span}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k) \).

 (c) Suppose \(T: V \rightarrow W \) is a linear transformation between two \(\mathbb{F} \)-vector spaces. Define the kernel of \(T \).
3. Compute AB and A^t where $A = \begin{bmatrix} -1 & 3 & 0 & 2 \\ 4 & -1 & -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -1 & 0 \\ 1 & 1 & 2 \\ 3 & -3 & 0 \end{bmatrix}$.

4. Consider the following 3×3 matrix over \mathbb{Z}_5.

$$C = \begin{bmatrix} 2 & 2 & 4 \\ 1 & 3 & 3 \\ 4 & 2 & 0 \end{bmatrix}$$

(a) Row reduce the matrix over \mathbb{Z}_5.

(b) Find a basis for the kernel of C.

(c) Are the column vectors (of C) $v_1 = (2, 1, 4), v_2 = (2, 3, 2), v_3 = (4, 3, 0)$ a basis for \mathbb{Z}_5^3?
5. Consider the matrix over \(\mathbb{R} \) and its row echelon form.

\[
A = \begin{bmatrix}
0 & -3 & -6 & 4 & 9 \\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
1 & 4 & 5 & -9 & -7
\end{bmatrix}; \quad \text{rref}(A) = \begin{bmatrix}
1 & 0 & -3 & 0 & 5 \\
0 & 1 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}.
\]

(a) Circle the pivot positions in \(\text{rref}(A) \). How many free variables are there? What are they?

(b) Find a basis for the kernel of \(A \).

(c) Do the column vectors of \(A \) span all of \(\mathbb{R}^4 \)? Explain.

6. Let \(V = \mathbb{R}^n \) and let \(S = \{v_1, \ldots, v_k\} \) be a collection of \(k \)-many vectors in \(V \). Explain what you would do to determine whether the set \(S \) is linearly independent.
7. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by
\[T(x, y, z) = (x - y - z, y - z, z - x). \]
(a) Prove that T is a linear transformation.

(b) Find the matrix representation A_T of T.

(c) Row reduce A_T.

(d) Compute the determinant of A_T.

(e) Is the vector $\vec{v} = (3, 4, 6)$ in the span of the column vectors of A_T?