Throughout we let $A = (a_{ij})$ denote an $n \times m$ matrix, and $B = (b_{ij})$ denote a $r \times k$ matrix. We let \mathbb{F} denote a field and V and W are \mathbb{F}-vector spaces. Let $T : V \to W$ be a linear transformation.

1. A system of linear equations is **consistent** if

2. A system of linear equations is **inconsistent** if

3. A system of linear equations is said to be **homogeneous** if

4. The **order** of a matrix is

5. The set of all $n \times m$ matrices is denoted by

6. The matrix is a **square** matrix if

7. The $n \times n$ **identity** matrix is defined as $I_n = (m_{ij})$ where

8. The matrix A is said to be in **row echelon form** if

9. The matrix A is said to be in **reduced echelon form** if

10. The **transpose** of the matrix A is the matrix

11. The **trace** of the matrix A is

12. The matrix A is said to be **symmetric** if

13. The matrix A is said to be **skew-symmetric** if

14. The matrix A is said to be **orthogonal** if

15. The matrix A is said to be **diagonal** if

16. The matrix A is said to be **upper triangular** if

17. The matrix A is said to be **lower triangular** if

18. The matrix A is said to be **triangular** if

19. The matrix A is said to have a **LU-factorization** if
20. The matrix A is said to be invertible if

21. The inverse of the (square) matrix A is

22. The matrices A and B are said to be similar if

23. The matrices A and B are said to be row equivalent if

24. The matrix A is said to be diagonalizable if

25. The determinant of the (square) matrix A is defined as the quantity

26. A (square) matrix A is said to be idempotent if

27. A group is a

28. A field is a

29. A scalar is

30. An F-vector space is a

31. A subspace of V is

32. Let $S \subseteq V$ be a set of vectors. The span of S (i.e. the subspace generated by S) is

33. A set of vectors, say S, is said to be linearly dependent if

34. A set of vectors, say S, is said to be linearly independent if

35. A set of vectors, say S, is said to be a basis if

36. The dimension of a subspace of V is

37. The row space of a matrix is

38. The column space of a matrix is

39. The nul space of a matrix is

40. The rank of the matrix A is denoted by rank(A) and is

41. The nullity of a matrix A is denoted by nullity(A) and is
42. The notation \(f : C \to D \) is read as

43. In the notation \(f : C \to D \) the letter \(f \) is called the

44. In the notation \(f : C \to D \) the set \(C \) is called the

45. In the notation \(f : C \to D \) the set \(D \) is called the

46. A function \(T : V \to W \) is called a **linear transformation** if

47. A function \(T : V \to W \) is called a **linear isomorphism** if

48. Let \(T : V \to W \) be a linear transformation and \(v \in V \). The **image** of \(v \) is

49. The **range** of \(T \) is

50. Let \(T : V \to W \) be a linear transformation and \(w \in W \). The **preimage** of \(w \) is

51. The kernel of the linear transformation \(T : V \to W \) is

52. The function \(f : C \to D \) is said to be **one-to-one** (aka *injective*) if

53. The function \(f : C \to D \) is said to be **onto** (aka *surjective*) if

54. The function \(f : C \to D \) is called a **bijection** if

55. The function \(f : C \to D \) is called a **permutation** if

56. The **(standard) matrix representation** of the linear transformation \(T : \mathbb{R}^n \to \mathbb{R}^m \) is

57. An **eigenvalue** for the matrix \(A \) is

58. An **eigenvector** for the matrix \(A \) is

59. The **characteristic polynomial** of the matrix \(A \) is

60. The **eigenspace** of \(A \) corresponding to the eigenvalue \(\lambda \) is denoted by \(E_\lambda \) and is