Reit

= Elim, =Intro

^ Elim, ^ Intro p.145

V Elim p.151 (Proof by Cases), Last sentence in both cases must be the same.
V intro p.149

P → Q (conditional) if P, then Q.
→ Elim p.207 1. P→Q, 2. P, then can conclude Q.

→ Intro p.207 by having a subproof that starts with P and end with Q, then outside of subproof can state P→Q.

↔ biconditional ... if and only if necessary and sufficient
↔ Elim, 1. P↔Q, 2. P... can conclude Q, or 1. P↔Q, 2. Q... can conclude P,

↔ Intro to conclude the sentence P ↔ Q: two subproofs (P → Q) and (Q → P)

When your conclusion is a disjunction: P VQ. Use a Law of Excluded Middle. PV¬P (Taut Con)
⊥ Elim p.161
⊥ Intro p.157

¬ Elim p.156, ¬Intro p. 157

Contrapositive: P → Q is tautologically equivalent to ¬Q → ¬P