THE YOSIDA SPACE OF THE VECTOR LATTICE HULL OF AN ARCHIMEDEAN *l*-GROUP WITH UNIT

RICHARD N. BALL, ANTHONY W. HAGER, DONALD G. JOHNSON, JAMES J. MADDEN, AND WARREN WM. MCGOVERN

Communicated by Yasunao Hattori

ABSTRACT. **W** is the category of archimedean ℓ -groups with distinguished weak order unit. For $G \in \mathbf{W}$, we have the contravariantly functorial Yosida space $\mathcal{Y}G$. For an embedding $G \leq H$, the resulting $\mathcal{Y}G \leftarrow \mathcal{Y}H$ is surjective; when this is one-to-one, we write " $\mathcal{Y}H = \mathcal{Y}G$ ". This is the case with the divisible hull $G \leq dG$, where, always, $\mathcal{Y}dG = \mathcal{Y}G$; however for the vector lattice hull $G \leq vG$, we frequently have $\mathcal{Y}vG \neq \mathcal{Y}G$. Theorem. A compact space \mathcal{X} is quasi-F if and only if: $\forall G \in \mathbf{W}$ with $\mathcal{Y}G = \mathcal{X}$, also $\mathcal{Y}vG = \mathcal{X}$. ("quasi-F" means each dense cozero set is C*-embedded.)

1. INTRODUCTION/PRELIMINARIES

In W (or more generally), a hull class A with hull operator a is an isomorphism closed object class A in W together with the operator a which satisfies: for each $G \in \mathbf{W}$ there is $G \leq \mathbf{a}G$ which is a unique minimum essential extension to an A-object. Then, any essential extension $G \leq A_0 \in \mathbf{A}$ contains (a model of) $\mathbf{a}G$, as $\mathbf{a}G = \bigcap \{A \in \mathbf{A} : G \leq A \leq A_0\}$. If, further, A is a (essential mono-) reflective subcategory (any $G \to A \in \mathbf{A}$ lifts (uniquely) over $\mathbf{a}G$), then any $G \leq A_0 \in \mathbf{A}$ (not assumed essential) contains $\mathbf{a}G$. (See [2], [5], [17], [15].)

This paper considers the effect of the vector lattice hull/monoreflection on Yosida spaces.

Key words and phrases. Archimedean ℓ -group, vector lattice reflection, Yosida space, quasi-F-space.

²⁰¹⁰ Mathematics Subject Classification. 06F20, 46A40, 54B35, 54G05, 18A40, 46E05, 54C30.

2 R. BALL, A. HAGER, D. JOHNSON, J. MADDEN, AND W. MCGOVERN

For $G \in \mathbf{W}$, the Yosida space of G is the compact Hausdorff space $\mathcal{Y}G$ of ideals of G maximal for not containing the unit (the "values of the unit"), with the hullkernel topology. The Yosida representation of G is the embedding of G into the lattice $D(\mathcal{Y}G)$ (extended-real (almost finite) continuous functions) carrying the unit to the constant function 1; the image of G separates the points of $\mathcal{Y}G$, and $\mathcal{Y}G$ is unique for these features. We identify G with its image. For any $G \in \mathbf{W}$, G^* denotes the set of bounded elements of G. Thus, $G^* = G \cap C(\mathcal{Y}G) \in \mathbf{W}$ and $\mathcal{Y}G^* = \mathcal{Y}G$.

Further, " \mathcal{Y} " is functorial: if $G \xrightarrow{\varphi} H \in \mathbf{W}$, there is the unique continuous $\mathcal{Y}G \xleftarrow{\mathcal{V}\varphi} \mathcal{Y}H$ for which $\varphi(g) = g \circ \mathcal{Y}\varphi$, given as $\mathcal{Y}\varphi(M) = \varphi^{-1}M$. (See [18].) If φ is one-to-one, then $\mathcal{Y}\varphi$ is surjective.

The divisible hull/monoreflection, d, preserves \mathbf{W} , and for $G \in \mathbf{W}$, is $dG = \{rg : g \in G, r \in \mathbb{Q}\} \leq D(\mathcal{Y}G)$ (as is easily seen). It results (by the uniqueness above, or otherwise) that $\mathcal{Y}dG = \mathcal{Y}G$. (Divisible hulls exist in torsion-free abelian groups, so in abelian ℓ -groups, and hence in archimedean ℓ -groups, thence in \mathbf{W} . See [2], [1].)

The vector lattice hull/monoreflection, v, exists for archimedean ℓ -groups and preserves **W**. (See [4], [3].) But (in contrast with d), $\{rg : g \in G, r \in \mathbb{R}\}$ may not be closed under addition in $D(\mathcal{Y}G)$ (see §3 below). This means that for the embedding $G \hookrightarrow vG$, the Yosida surjection $\mathcal{Y}G \stackrel{\tau}{\leftarrow} \mathcal{Y}vG$ need not be one-to-one: " $\mathcal{Y}vG \neq \mathcal{Y}G$ ". We shall reserve " τ " for this surjection (G being understood). This paper considers how - and the degree to which - τ can fail to be one-to-one. Our most incisive observation is the theorem in the abstract, Theorem 3.1 below, with elaboration in Theorem 3.5.

We shall need some facts about "covers" of compact spaces. See [11] and [24] for details.

In compact Hausdorff spaces, with all maps continuous: $\mathcal{X} \stackrel{f}{\leftarrow} \mathcal{Y}$ is called *irreducible* if: \mathcal{F} proper closed in $\mathcal{Y} \Longrightarrow f(\mathcal{F}) \neq \mathcal{X}$. Then (\mathcal{Y}, f) is called a *cover* of \mathcal{X} . Such a map inversely preserves dense sets. The present relevance of these functions is: in \mathbf{W} , an extension $G \leq H$ is essential iff its Yosida map $\mathcal{Y}G \leftarrow \mathcal{Y}H$ is a cover of $\mathcal{Y}G$; also, given $G \in \mathbf{W}$ and a cover $\mathcal{Y}G \stackrel{f}{\leftarrow} \mathcal{X}$, G embeds into the lattice $D(\mathcal{X})$, as $g \mapsto g \circ f$. (See [19].)

We note a few items about covers. Given two covers of \mathcal{X} , say (\mathcal{Y}_i, f_i) , i = 1, 2, if there is $\mathcal{Y}_1 \stackrel{h}{\leftarrow} \mathcal{Y}_2$ with $f_2 = f_1 \circ h$, we write $(\mathcal{Y}_1, f_1) \leq (\mathcal{Y}_2, f_2)$, and say the two covers are "equivalent" if h is a homeomorphism. The collection of equivalence classes of covers of \mathcal{X} is a set, denoted cov \mathcal{X} ; it is also a complete lattice. Note

that, given \mathcal{X} and \mathcal{S} dense in \mathcal{X} , the unique $\mathcal{X} \stackrel{f}{\leftarrow} \beta \mathcal{S}$ extending the inclusion $\mathcal{S} \hookrightarrow \mathcal{X}$ has $(\beta \mathcal{S}, f) \in \operatorname{cov} \mathcal{X}$.

Various of these details will be used without explicit mention.

2. Real ideals

For $G \in \mathbf{W}$, the real ideal space of G is

$$\mathcal{R}G \equiv \{ M \in \mathcal{Y}G : G/M \le \mathbb{R} \}$$

So, viewing $G \leq D(\mathcal{Y}G)$,

$$\mathcal{R}G = \{ p \in \mathcal{Y}G : g(p) \in \mathbb{R}, \forall g \in G \}$$
$$= \cap \{ g^{-1}(\mathbb{R}) : g \in G \}.$$

If $\mathcal{R}G$ is dense in $\mathcal{Y}G$, then G may be called an " ℓ -group of real-valued functions", because $G \ni g \mapsto g \mid_{\mathcal{R}G} \in C(\mathcal{R}G)$ is one-to-one. If $G \in \mathbf{W}^*$ (meaning the unit is strong), then $\mathcal{R}G = \mathcal{Y}G$ and $G \leq C(\mathcal{Y}G)$.

We take note of the effect of v, or of any essential monoreflection, on $\mathcal{R}G$.

Proposition 2.1. ([9]). Suppose $\mathbf{W} \xrightarrow{a} \mathbf{A}$ is an essential monoreflection.

(a) $\forall G \leq aG$, the associated $\mathcal{Y}G \xleftarrow{\mu} \mathcal{Y}aG$ is a cover for which $\mu(\mathcal{Y}aG \setminus \mathcal{R}aG) = \mathcal{Y}G \setminus \mathcal{R}G$, and μ restricts to a homeomorphism $\mathcal{R}G \leftarrow \mathcal{R}aG$.

(b) $\forall \mathcal{X}, C(\mathcal{X}) \in \mathbf{A}.$

(c) If $\mathcal{R}G$ is dense in $\mathcal{Y}G$, then $aG \leq C(\mathcal{R}G)$, so $\mathcal{Y}aG$ is a compactification of $\mathcal{R}G$.

(d) If $G \in \mathbf{W}^*$, then $aG \leq C(\mathcal{Y}G)$, so $\mathcal{Y}aG = \mathcal{Y}G$.

We are concerned here with the particular case of a = v, the vector lattice reflector. Our basic question is "What is (or can be) $\mathcal{YG} \stackrel{\tau}{\leftarrow} \mathcal{Y}vG$?" Repeating some of the above for a = v:

Corollary 2.2. Suppose $G \in \mathbf{W}$, with $G \leq vG$ and its irreducible map $\mathcal{Y}G \xleftarrow{} \mathcal{Y}vG$.

(a) If $M \in \mathcal{R}G$ then $|\tau^{-1}(M)| = 1$.

(b) If $\mathcal{R}G$ is dense in $\mathcal{Y}G$, then $vG \leq C(\mathcal{R}G)$ and $\mathcal{Y}vG$ is a compactification of $\mathcal{R}G$.

For this situation, one can pose some detailed questions, which we have not answered except in trivial cases. **Questions:** For G as in Corollary 2.2,

(a) For any $M \in \mathcal{Y}G$, what does " $|\tau^{-1}(M)| = 1$ " mean? Is there an algebraic condition on M or on G/M?

(b) With $\mathcal{R}G$ proper and dense in $\mathcal{Y}G$, when is $vG = C(\mathcal{R}G)$? (When is $\mathcal{Y}vG = \beta \mathcal{R}G$?)

The inscrutability here partly explains why our approach to the question "What is $\mathcal{Y}G \stackrel{\tau}{\twoheadleftarrow} \mathcal{Y}vG$?" has been converted by replacing $\mathcal{Y}G$ by a compact space \mathcal{X} , and then tailoring those Gs for which $\mathcal{Y}G = X$ - as in the theorem of the abstract, whose proof we now turn to.

3. QUASI-F-SPACES AND THE THEOREM

A space \mathcal{X} is called *quasi-F* (*QF*) if each dense cozero-set in \mathcal{X} is C^* -embedded. These spaces were introduced (without naming) in [21], to the purpose: in $D(\mathcal{X})$, the partially defined operation + (and/or \cdot) is fully defined iff \mathcal{X} is *QF*. Then, clearly, $D(\mathcal{X}) \in \mathbf{W}$ and is a vector lattice. The name *QF* was given in [7] where it is shown: for compact \mathcal{X} , there is the minimum *QF* cover, $\mathcal{X} \stackrel{\sigma}{\leftarrow} QF\mathcal{X}$, namely $QF\mathcal{X} = \varprojlim \{\beta S : S \in \operatorname{dcoz} \mathcal{X}\}$, where dcoz \mathcal{X} denotes the collection of dense cozero sets in \mathcal{X} . We reserve " σ " for this surjection. (See also [25] and [22] for considerable further information about "*QF*".)

Thus, for $G \in \mathbf{W}$, G embeds into $D(QF\mathcal{Y}G)$ as $g \to g \circ \sigma$; we write $G \leq D(QF\mathcal{Y}G)$. We have $G \leq vG \leq D(QF\mathcal{Y}G)$, representing an upper bound for vG. By Yosida, and cover theory, σ factors uniquely as $\mathcal{YG} \stackrel{\tau}{\leftarrow} \mathcal{Y}vG \ll QF\mathcal{Y}G$, representing an upper bound, in the sense of covers, for $\mathcal{Y}vG$. We show in Theorem 3.5 below that these upper bounds are, in a certain sense, "least".

Theorem 3.1. Suppose \mathcal{X} is a compact space. For each $G \in \mathbf{W}$ with $\mathcal{Y}G = \mathcal{X}$, also $\mathcal{Y}vG = \mathcal{X}$ if and only if \mathcal{X} is QF.

Lemma 3.2 below is, in detail, the construction for the proof of Theorem 3.1. This will find further purpose. The construction is an elaboration of [13], Example 1.

Note that if \mathcal{X} is compact and $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$, then there are various $f \in D(\mathcal{X})^+$ with $f^{-1}(\mathbb{R}) = \mathcal{S}$: for any $w \in C(\mathcal{X})^+$, with $\operatorname{coz} w = \mathcal{S}$, define $f \in D(\mathcal{X})$ as 1/won \mathcal{S} and $+\infty$ on $\mathcal{X} \setminus \mathcal{S}$.

Lemma 3.2. Suppose \mathcal{X} is a compact space. Suppose $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$, $f \in D(\mathcal{X})^+$ with $f^{-1}(\mathbb{R}) = \mathcal{S}$, and $u \in C^*(S)$. There is $G = G(f, u) \leq C(\mathcal{S})$ for which: $f \in G$; $G^* = C(\mathcal{X})$ (so $\mathcal{Y}G = \mathcal{X}$); and $u \in vG$. Since $vG \leq C(\mathcal{S})$, the natural map $\mathcal{X} \ll \beta \mathcal{S}$ (Čech-Stone extension of $\mathcal{S} \hookrightarrow \mathcal{X}$) factors as $\mathcal{X} = \mathcal{Y}G \ll \mathcal{Y}vG \ll \beta \mathcal{S}$.

We first prove Theorem 3.1 from Lemma 3.2, then prove Lemma 3.2.

PROOF OF THEOREM 3.1. If \mathcal{X} is not QF, there is $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$ that is not C^* embedded in \mathcal{X} : there is $u \in C^*(\mathcal{S})$ that cannot be extended over \mathcal{X} . Take $f \in D(\mathcal{X})^+$ with $f^{-1}(\mathbb{R}) = \mathcal{S}$. Then, Lemma 3.2 provides a group G = G(f, u), for which the mapping $\mathcal{Y}G \stackrel{\tau}{\leftarrow} \mathcal{Y}vG$ is not one-to-one: $\mathcal{Y}G \neq \mathcal{Y}vG$.

If \mathcal{X} is QF, then $\mathcal{X} = QF\mathcal{X}$, so when $\mathcal{Y}G = \mathcal{X}$ the usual $\mathcal{Y}G \leftarrow \mathcal{Y}vG \leftarrow QF\mathcal{Y}G$ is, in fact, $\mathcal{X} = \mathcal{Y}G \leq \mathcal{Y}vG \leq QF\mathcal{X} = \mathcal{X}$.

PROOF OF LEMMA 3.2. Let \mathcal{X}, \mathcal{S} and f be as stated. Then, $\mathcal{S} = \bigcup_n f^{-1}[0, n]$. For $g, h \in C(\mathcal{S})$, define:

$$g \doteq h$$
 if $\exists n \in \mathbb{N}$ with $f(x) > n \Longrightarrow g(x) = h(x)$

(Here, we say: "g and h are eventually equal, with respect to \mathcal{S} .")

Now let u be as stated, and let $\gamma \in \mathbb{R} \setminus \mathbb{Q}$. Define $G = G(f, u) \subseteq C(S)$:

$$g \in G \text{ means } g \in C(\mathcal{S}) \text{ and for some } a, b \in \mathbb{Z} \text{ and } w \in C(\mathcal{X}) \mid_{\mathcal{S}},$$
$$g \doteq af + b\gamma (f + u) + w = (a + b\gamma) f + (b\gamma u + w) \tag{(†)}$$

(Note that this also depends upon γ , which seems immaterial.)

Note, first, that $f \in G$ (a = 1, b = 0, w = 0) and $C(\mathcal{X}) |_{\mathcal{S}} \subseteq G$ (a = 0 = b). Clearly, $g \in G \Rightarrow -g \in G$, and if $g_1, g_2 \in G$ are expressed (eventually) in the form (\dagger) then their sum eventually can be expressed in that form. So, G is a subgroup of $D(\mathcal{S})$.

Each member of G is either unbounded, in which case it is dominated, eventually, by the $(a + b\gamma) f$ term in (†) (a and b cannot both be 0), or it is bounded (a = b = 0) and so is in $C(\mathcal{X}) \mid_{\mathcal{S}} \subseteq G$ (so, in fact, $G^* = C(\mathcal{X}) \mid_{\mathcal{S}}$). It follows that $G \in \mathbf{W}$, as we now demonstrate.

Suppose $g_1, g_2 \in G$: $g_i = (a_i + b_i \gamma) f(x) + (b_i \gamma u(x) + w_i(x))$ whenever $f(x) > n_i$, for i = 1, 2.

Suppose g_1 is unbounded. Then, $a_1 + b_1 \gamma \neq 0$, and either:

• $a_1 + b_1\gamma > a_2 + b_2\gamma$ (or the reverse) and so, eventually, $g_1 > g_2$, and $g_1 \vee g_2 \doteq (a_1 + b_1\gamma) f + (b_1\gamma u + w_1)$. (The details.

 $g_1 - g_2 \doteq \left[(a_1 + b_1 \gamma) - (a_2 + b_2 \gamma) \right] f + \left[(b_1 - b_2) \gamma u + (w_1 - w_2) \right].$

The second term is a function in $C^*(\mathcal{S})$ so there is $n \in \mathbb{N}$ which satisfies:

$$|(b_1 - b_2) \gamma u(x) + (w_1 - w_2)(x)| < n \text{ for all } x \in S$$

Now choose $m \in \mathbb{N}$ with

$$m > n_1 \lor n_2 \lor \frac{n}{(a_1 + b_1 \gamma) - (a_2 - b_2 \gamma)}.$$

Now when f(x) > m, we have $(g_1 - g_2)(x) > 0$, so $g_1 \lor g_2 \doteq g_1$.)

Or,

• $a_1 + b_1 \gamma = a_2 + b_2 \gamma$, so $a_1 = a_2$ and $b_1 = b_2$; whence, eventually, $g_1 - g_2 = w_1 - w_2$ and we have: $g_1 \vee g_2 \doteq (a_1 + b_1 \gamma) f + b_1 \gamma u + w_1 \vee w_2$.

Suppose g_1 and g_2 are both bounded $(a_1 = b_1 = 0 = a_2 = b_2)$. Then, eventually $g_1 \vee g_2 \doteq w_1 \vee w_2$.

Thus, in every case $g_1 \lor g_2 \in G$, so $G \in \mathbf{W}$.

Observe that with
$$g \equiv f$$
 and $h \equiv \gamma (f + u)$, we have $\frac{1}{\gamma}h - g = u \in vG$. \Box

We would like, have tried, to extend the construction in Theorem 3.1 to obtain the answer to $(Q_1) \forall \mathcal{X} \exists G$ with $\mathcal{Y}G = \mathcal{X}$ and $\mathcal{Y}vG = QF\mathcal{X}$? A first step might be extending Lemma 3.2 to: $(Q_2) \forall \mathcal{S} \in \operatorname{dcoz} \mathcal{X}, \exists G(\mathcal{S})$ with $\mathcal{Y}G(\mathcal{S}) = \mathcal{X}$ and $\mathcal{Y}vG(\mathcal{S}) = \beta \mathcal{S}$? One tries to prove this *via* a construction like that in the proof of Lemma 3.2, but letting the *u* there range over **all of** $C^*(\mathcal{S})$, defining a *set G* to be all those functions $g \in G(\mathcal{S}, f, \gamma)$ for which there are $a, b \in \mathbb{Z}$, $w \in C(\mathcal{X})$ and *some* $u \in C^*(\mathcal{S})$ with $g \doteq af + b\gamma (f + u) + w$. But, even using only two functions, u_1 and u_2 , this process fails to always yield a group: in many situations, the set *G* will contain two functions whose sum fails to be extendable over \mathcal{X} .

On the other hand, here is a partial answer to (Q_2) .

Theorem 3.3. Suppose \mathcal{X} is compact, $\mathcal{S} \in \operatorname{dcoz}(\mathcal{X})$, and the cardinal of $C^*(\mathcal{S})$ is c (cardinal of the reals). Then there is $G \in W$ with $G \leq C(\mathcal{S})$, $\mathcal{Y}G = \mathcal{X}$, and $(vG)^* = C^*(\mathcal{S})$. Thus $\mathcal{Y}vG = \beta \mathcal{S}$.

PROOF. S is locally compact, so has its one-point compactification $\alpha S = S \cup \{\alpha\}$, and S is σ -compact, so $S \in \operatorname{dcoz} \alpha S$. As explained at the end, the result for the general \mathcal{X} follows from the result for just $\mathcal{X} = \alpha S$, which we now prove.

The method is that of Lemma 3.2, elaborated with:

Let \mathcal{H} be a Hamel basis for the reals with $1 \in \mathcal{H}$, and let $b : \mathcal{H} \to C^*(\mathcal{S})$ be a bijection with b(1) = 0.

Now take $f \in C(\mathcal{S})^+$ with extension in $D(\alpha \mathbb{N})$ (again "f"), having $f(\alpha) = +\infty$. For $h \in \mathcal{H}$, put $u(h) \equiv h \cdot (f + b(h)) \in C(\mathcal{S})$. Note that u(h) = 0 iff h = 0 iff u(h) is bounded; and all $u(h) \in D(\alpha \mathbb{N})$ (by extension); u(1) = f.

Let \mathcal{U} consist of all finite sums $\sum f_i u(h_i)$ with the $r_i \in \mathbb{Q}$. This is the \mathbb{Q} -vector lattice in $C(\mathcal{S})$ generated by the u(h)'s. Let $u \in \mathcal{U}$:

$$u = \sum r_i u(h_i) = \sum r_i h_i (f + b(h_i)) = \left(\sum r_i h_i\right) \cdot f + \sum r_i h_i b(h_i) = \gamma_u \cdot f + w$$

Note that w is bounded, and that u is bounded iff $\gamma_u = 0$ iff all $r_i = 0$ (by the \mathbb{Q} -linear independence) iff u = 0. Thus $\mathcal{U} \subseteq D(\alpha S)$ (by extension).

Now define $G \subseteq C(S)$ as in Lemma 3.2: $g \in G$ means $g \doteq u + c$ for some $u \in \mathcal{U}$ and $c \in \mathbb{R}$; g is bounded iff $g \doteq c$. Evidently, G is a group, $G \subseteq D(\alpha S)$ (by extension), and G is a lattice as in the proof of Lemma 3.2. So we have $YG = \alpha S$.

For $vG \leq C(\mathcal{S})$, we have: For $h \neq 0$, $\frac{1}{h}u(h) - f = b(h) \in vG$. I.e., $C^*(\mathcal{S}) \leq vG \leq C(\mathcal{S})$. Thus $\mathcal{Y}vG \leq \beta \mathcal{S}$.

Finally: Suppose $S \in \operatorname{dcoz} \mathcal{X}$, i.e., \mathcal{X} is an arbitrary compactification of S, instead of the above αS . Let $\alpha S \xleftarrow{\tau} \mathcal{X}$ extend the identity on S. Let Gbe as constructed above, using αS , $G \approx G \circ \tau \leq D(\mathcal{X}) \cap C(S)$. Let $H \equiv jm(G \circ \tau + C(\mathcal{X})) \leq D(\mathcal{X}) \cap C(S)$. (See §4 about "jm".) We have $H^* = C(\mathcal{X})$, so that $\mathcal{Y}H = \mathcal{X}$. (If this is not obvious, see [6], 2.6.) Since $G \leq H \leq C(S)$, we have $vG \leq vH \leq C(S)$ (see §1); $\mathcal{Y}vH = \beta S$ follows.

- **Remark 3.4.** a): Theorem 3.3 applies to any compactification \mathcal{X} of metrizable \mathcal{S} which is infinite, locally compact and σ -compact (for then \mathcal{S} is separable, so $|C^*(\mathcal{S})| = c$).
 - **b):** One wonders if Theorem 3.3 can be extended to $S \in \operatorname{dcoz} \mathcal{X}$ (with $|C^*(S)| = c$). A particular case of this is $\mathcal{X} = [0,1]$, S its irrational points, where $QF\mathcal{X}$ is the projective cover of [0,1].
 - c): Here is a very weak partial answer "yes" to (Q_1) : "yes" for $S \in \operatorname{dcoz} \mathcal{X}$, $|C^*(S)| = c, S$ itself QF, because the G produced in Theorem 3.3 has $\mathcal{Y}vG = \beta S$ and $\beta S = QF\mathcal{X}$. Examples of such S are $S = \sum \mathcal{Y}_n$, with $\forall n \ \mathcal{Y}_n$ infinite compact QF with $|C(\mathcal{Y}_n)| \leq c$ (for then $|C^*(S)| =$ $\prod_n |C(\mathcal{Y}_n)| = c^{\aleph_0} = c$). Compact $QF \ \mathcal{Y}$ with $|C(\mathcal{Y})| \leq c$ include $\mathcal{Y} = \beta \mathbb{N}$ and $\mathcal{Y} = \alpha D(m)$, where D(m) is discrete of cardinal $m \leq c$.

On the other hand again, another close look at Lemma 3.2 reveals what might be called a weak answer to (Q_1) of a different sort, *per* the last sentence before Theorem 3.1. Given \mathcal{X} , we make G "closely tied" to \mathcal{X} , with vG "very large" in $D(QF\mathcal{X})$; in particular, with $\mathcal{Y}vG = QF\mathcal{X}$. Probably, refinement of this is possible; here, we only sketch the details.

Theorem 3.5. Suppose \mathcal{X} is a compact space. There is a family $\{G_i\}_{i \in I} \subseteq \mathbf{W}$ with the following properties.

- **a):** For each $i \in I$, $\mathcal{Y}G_i = \mathcal{X}$; consequently, $G_i \leq vG_i \leq D(QF\mathcal{X})$. Let G be the sub- ℓ -group of $D(QF\mathcal{X})$ generated by $\cup_{i \in I}G_i$.
- **b):** G is order-cofinal in $D(QF\mathcal{X})$.

8

- c): $(vG)^*$ is uniformly dense in $C(QF\mathcal{X})$. Thus, $\mathcal{Y}vG = QF\mathcal{X}$.
- **d**): $QF\mathcal{X} = \bigvee_{i \in I} \mathcal{Y}vG_i = \mathcal{Y}vG$ (the sup in the sense of $\operatorname{cov} \mathcal{X}$).

PROOF. Given $S \in \operatorname{dcoz} \mathcal{X}$, Lemma 3.2 provides the groups $G(f, u) \leq C(S)$; relabel this G(S, f, u). Our index set, I, will consist of all such triples (S, f, u): $i \in I$ means i = (S, f, u) and $G_i = G(S, f, u)$ with $\mathcal{Y}G_i = \mathcal{X}$. Thus, we have a).

We will use some details from [7], §3. For each $S \in \operatorname{dcoz} \mathcal{X}$, we have the cover $\mathcal{X} \leftarrow \beta \mathcal{S} \leftarrow QF \mathcal{X}$. Now, $QF \mathcal{X} = \varprojlim \{\beta \mathcal{S} : \mathcal{S} \in \operatorname{dcoz} \mathcal{X}\}$, and

$$QF\mathcal{X} = \bigvee \{\beta \mathcal{S} : \mathcal{S} \in \operatorname{dcoz} \mathcal{X}\}$$

expresses $QF\mathcal{X}$ in the lattice $\operatorname{cov} \mathcal{X}$ (abusing notation). If $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$, then $\mathcal{X} \leftarrow \beta \mathcal{S}$ gives an embedding $C(\mathcal{S}) \leq D(QF\mathcal{X})$, and $\bigcup_{\mathcal{S} \in \operatorname{dcoz} \mathcal{X}} C(\mathcal{S})$ is uniformly dense in $D(QF\mathcal{X})$, thus order-cofinal, and $\bigcup_{\mathcal{S} \in \operatorname{dcoz} \mathcal{X}} C^*(S)$ is uniformly dense in $C(QF\mathcal{X})$.

From these facts, and Lemma 3.2, our assertions will follow.

Fix \mathcal{S} . Set $\mathcal{S}' = \left\{ f \in D\left(\mathcal{X}\right)^+ : f^{-1}\mathbb{R} = \mathcal{S} \right\}$. Then $\mathcal{S}' \subseteq C(\mathcal{S})$ and is order cofinal there. (Choose $f \in \mathcal{S}'$; then $\forall g \in C(\mathcal{S}), f \lor g$ (really, $f \mid_{\mathcal{S}} \lor g$) extends over $\mathcal{X} \setminus \mathcal{S}$ by defining $f \lor g(x) = +\infty$ there, so $f \lor g \in \mathcal{S}'$.) Since each $f \in G(\mathcal{S}, f, u)$, we have $G_{\mathcal{S}} \equiv \bigcup_{(f, u)} G(\mathcal{S}, f, u)$, and thus $G = \lor_i G_i = \lor_{\mathcal{S}} G_{\mathcal{S}}$ is order cofinal in $D(QF\mathcal{X})$. Hence, b).

Since $u \in vG(\mathcal{S}, f, u)$ always, we have $C^*(\mathcal{S}) \leq vG_{\mathcal{S}}$, and since $\cup_{\mathcal{S}} C^*(\mathcal{S})$ is uniformly dense in $C(QF\mathcal{X})$, so is $\cup_{\mathcal{S}} (vG_{\mathcal{S}})^*$, and hence also the larger $(vG)^*$. Thus, c).

Finally, $C^*(S) \leq vG_S \leq D(QF\mathcal{X})$ yields $\beta S \leftarrow \mathcal{Y}vG_S \leq QF\mathcal{X}$ and, taking suprema in $\operatorname{cov} \mathcal{X}$, we get $QF\mathcal{X} = \bigvee_S \mathcal{Y}vG_S \leq \mathcal{Y}vG \leq QF\mathcal{X}$. Thus, d). \Box

4. Addenda

We take this opportunity to correct the following situation. In [13], Theorem 2(a) states: If A is a reduced archimedean f-ring ("**frA** object"), then its vector

lattice hull, vA, is a reduced archimedean f-algebra ("frAa object"). The proof there was inadequate.

If G is an archimedean ℓ -group ("Arch object"), its "essential completion" takes the form $G \leq D(\mathcal{X})$, where \mathcal{X} is extremally disconnected (so $D(\mathcal{X})$ is a vector lattice). A model of vG is the sub-vector lattice of $D(\mathcal{X})$, generated by G. (See [4], [3].)

Note that when $D(\mathcal{X})$ is a group, it is also a ring, so is in $|\mathbf{frA}|$. When $G \in |\mathbf{frA}|$, the embedding $G \leq D(\mathcal{X})$ can be an \mathbf{frA} -embedding; that this is so can be demonstrated using a representation by Bernau or Johnson - see the discussion in §§3.4 and 5.3 in [12].

PROOF OF THE THEOREM. Suppose $H \subseteq D(\mathcal{X})$, with \mathcal{X} extremally disconnected. Let sH denote the sub-vector space of $D(\mathcal{X})$ generated by H:

$$sH \equiv \{\sum r_i h_i : 1 \le i \le n \in \mathbb{N}, r_i \in \mathbb{R}, h_i \in H\}$$

Note that if H is a subring of $D(\mathcal{X})$, then so is sH.

The sublattice of $D(\mathcal{X})$ generated by H is:

$$mjH \equiv \left\{ \bigwedge_{j} \bigvee_{i} h_{ij} : m, n \in \mathbb{N}, \ 1 \le i \le m, \ 1 \le j \le n, \ h_{ij} \in H \right\}.$$

If *H* is a subgroup of $D(\mathcal{X})$, then mjH is a subgroup; also, if *H* is a subring of $D(\mathcal{X})$, then mjH is a subring. (See Theorem 2.1 in [14].) In any vector lattice *L* it is true that ([23], Theorem 11.5(vi)): for any $a, b \in L$ and $r \in \mathbb{R}$, the following identities, and their duals, hold:

$$r(a \lor b) = ra \lor rb \text{ when } r \ge 0,$$

$$r(a \lor b) = ra \land rb \text{ when } r \le 0.$$

It follows that mjH is a vector lattice if H is a sub-vector space of $D(\mathcal{X})$ and it is a sub-f-ring of $D(\mathcal{X})$ when H is a sub-algebra of $D(\mathcal{X})$.

Thus, if $A \in |frA|$, with $A \leq D(\mathcal{X})$, then

$$vA = mj\left(sA\right),$$

so $vA \in |\mathbf{frA}|$.

The proof of the theorem in [13] was inadequate in that we mis-interpreted [4] to say: for $G \leq D(\mathcal{X})$, vG = sG. We thank G. Buskes for questioning this.

Note that, in the argument above, the requirement that \mathcal{X} be extremally disconnected is stronger than necessary: " \mathcal{X} is QF" will do and - as we have seen less than that will not do.

In another vein, we have recently been considering questions concerning subsets of $A \subseteq D(\mathcal{X})$ and functions $f \in C(\mathbb{R})$ for which $f \circ A \subseteq A$ (which means $g \in A \Longrightarrow g^{-1}(\mathbb{R}) \xrightarrow{g} \mathbb{R} \xrightarrow{f} R$ extends to a function in A (one says that Ais closed under composition with f)). This notion, along with its analogs for $f \in C(\mathbb{R}^n), n = 2, 3, \dots, \omega$, has been used to good effect in similar settings (e.g.,[20], [9], [10], [16]). Here, we include the following very easy result, which complements Theorem 3.1 above.

Theorem 4.1. For \mathcal{X} compact, $C^*(\mathbb{R}) \circ D(\mathcal{X}) \subseteq D(\mathcal{X})$ iff \mathcal{X} is QF.

PROOF. Suppose $C^*(\mathbb{R}) \circ D(\mathcal{X}) \subseteq D(\mathcal{X})$ and let $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$. If $g \in C^*(\mathcal{S})$ and $\mathbb{N} \ni n \ge |g(x)| \ \forall \ x \in \mathcal{S}$, set $f \equiv [(-\mathbf{n}) \lor \mathbf{1}_{\mathbb{R}}] \land \mathbf{n} \in \mathbf{C}^*(\mathbb{R})$, where $\mathbf{1}_{\mathbb{R}}(r) = r$ for each $r \in \mathbb{R}$. Then $f \circ g$ extends to a function on $D(\mathcal{X})$ which must be g, since $f \circ g = g$ on \mathcal{S} .

Now suppose \mathcal{X} is $QF, g \in D(\mathcal{X})$, and $f \in C^*(\mathbb{R})$. Then $g^{-1}(\mathbb{R}) \xrightarrow{g} \mathbb{R} \xrightarrow{f} \mathbb{R} \in C^*(g^{-1}(\mathbb{R}))$, so extends over \mathcal{X} , since $g^{-1}(\mathbb{R}) \in \operatorname{dcoz} \mathcal{X}$, so is C^* -embedded in \mathcal{X} .

Acknowledgements. We thank the referee for a careful reading and valuable suggestions.

References

- Anderson, Marlow; Conrad, Paul Epicomplete l-groups. Algebra Universalis 12 (1981), no. 2, 224-241.
- [2] Bigard, Alain; Keimel, Klaus; Wolfenstein, Samuel Groupes et Anneaux Reticules. Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin-New York (1977)
- [3] Bleier, Roger D. Minimal vector lattice covers. Bull. Austral. Math. Soc. 5 (1971), 331-335
- [4] Conrad, Paul F. Minimal vector lattice covers. Bull. Austral. Math. Soc. 4 (1971), 35-39
- [5] Conrad, P. F. The hulls of representable l-groups and f-rings. J. Austral. Math. Soc. 26 (1973), 385-415
- [6] Carrera, R. E.; Hager, A. W. B-saturated hull classes in l-groups and covering classes of spaces. Appl. Categor. Struct. 23 (2015), 709 - 723
- [7] Dashiell, F.; Hager, A.; Henriksen, M. Order-Cauchy completions of rings and vector lattices of continuous functions. Canad J. Math.2 (1980), no. 3, 657-685
- [8] Gillman, Leonard, Jerison, Meyer, Rings of Continuous Functions, Reprint of the 1960 edition. Graduate Texts in Mathematics, No. 43. Springer-Verlag, New York-Heidelberg, 1976
- [9] Hager, Anthony W. C (X) has no proper functorial hulls. Rings of Continuous Functions (Cincinnati, Ohio, 1982), 149-164, Lecture Notes in Pure and Appl. Math., 95, Dekker, New York, 1985

- [10] Hager, Anthony W. Algebraic closures of *l*-groups of continuous functions. Rings of Continuous Functions (Cincinnati, Ohio, 1982), 165-194, Lecture Notes in Pure and Appl. Math., 95, Dekker, New York, 1985
- [11] Hager, Anthony W. Minimal covers of topological spaces. Papers on general topology and related category theory and topological algebra (New York, 1985-1987), 44-59, Ann. New York Acad. Sci., 552. New York Acad. Sci., New York, 1989
- [12] Hager, Anthony W. Some unusual epicomplete archimedean lattce-ordered groups, Proc. Amer. Math. Soc., Vol. 143 (2015), No. 5, 1969-1980
- [13] Hager, A. W.; Johnson, D. G. Adjoining an identity to a reduced archimedean f-ring. II. Appl. Categ. Structures 15 (2007), no. 1-2, 35-47
- [14] Hager, A. W.; Johnson, D. G. Some comments and examples on generation of (hyper-)archimedean l-groups and f-rings. Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), Fascicule Special. 75-100
- [15] Hager, A. W.; Madden, James J. Essential reflections versus minimal embeddings. J. Pure Appl. Algebra 37 (1985), no. 1, 27-32
- [16] Hager, Anthony W.; Madden, James J. The H-closed monoreflections, implicit operations, and countable composition, in archimedean lattice-ordered groups with weak unit. Applied Categorical Structures, 24 (2016), 605 - 617
- [17] Hager, Anthony W.; Martinez, Jorge Hulls for various kinds of α -completeness in Archimedean lattice-ordered groups. Order 16 (1999), no. 1, 89-103.
- [18] Hager, Anthony W.; Robertson, Lewis C. Representing and ringifying a Riesz space. Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), 411-431. Academic Pres, London, 1977
- [19] Hager, Anthony W.; Robertson, Lewis C. On the embedding into a ring of an Archimedean *l*-group. Canad. J. Math. 31 (1979), no. 1, 1-8
- [20] Henriksen, M.; Isbell, J. R.; Johnson, D. G. Residue class fields of lattice-ordered algebras. Fund. Math. 50 (1961/1962), 107-117
- [21] Henriksen, M.; Johnson, D. G. On the structure of a class of archimedean lattice-ordered algebras. Fund. Math. 50 (1961/1962),73-94
- [22] Henriksen, M.; Vermeer, J.; Woods, R. G. Quasi F-covers of Tychonoff spaces. Trans. Amer. Math. Soc. 303 (1987), no. 2, 779-803
- [23] Luxemburg, W. A. J.; Zaanen, A. C. Riesz Spaces I. North Holland, Amsterdam, The Netherlands (1971)
- [24] Porter, Jack R.; Woods, R. Grant Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag, New York, 1988. xiv+856 pp. ISBN: 0-387-96212-3
- [25] Zaharov, V. K.; Koldunov, A. V. Sequential absolute and its characterization. Dokl. Akad. Nauk SSSR 253 (1980), no. 2, 280-284

Received May 19, 2016 Revised version received August 3, 2016 Second revision received September 5, 2016

Dept. of Math, Univ. of Denver, Denver, CO 80208, USA *E-mail address*: rball@du.edu

Dept. of Math and CS, Wesleyan Univ. Middletown, CT 06459, USA $E\text{-}mail\ address:\ \texttt{ahager@wesleyan.edu}$

Current address: 4351 Nambe Arc, Las Cruces, NM 88011, USA E-mail address: dgjohnson@member.ams.org

DEPT. OF MATH, LSU, BATON ROUGE, LA 70803, USA *E-mail address*: jamesjmadden@gmail.com

WILKES HONORS COLLEGE, FLORIDA ATLANTIC UNIV., JUPITER, FL 33458, USA *E-mail address:* warren.mcgovern@fau.edu