THE YOSIDA SPACE OF THE VECTOR LATTICE HULL OF AN ARCHIMEDEAN ℓ-GROUP WITH UNIT

RICHARD N. BALL, ANTHONY W. HAGER, DONALD G. JOHNSON, JAMES J. MADDEN, AND WARREN WM. MCGOVERN

Communicated by Yasunao Hattori

Abstract

W}\) is the category of archimedean ℓ-groups with distinguished weak order unit. For $G \in \mathbf{W}$, we have the contravariantly functorial Yosida space $\mathcal{Y} G$. For an embedding $G \leq H$, the resulting $\mathcal{Y} G \leftarrow \mathcal{Y} H$ is surjective; when this is one-to-one, we write " $\mathcal{Y} H=\mathcal{Y} G$ ". This is the case with the divisible hull $G \leq d G$, where, always, $\mathcal{Y} d G=\mathcal{Y} G$; however for the vector lattice hull $G \leq v G$, we frequently have $\mathcal{Y} v G \neq \mathcal{Y} G$. Theorem. A compact space \mathcal{X} is quasi-F if and only if: $\forall G \in \mathbf{W}$ with $\mathcal{Y} G=\mathcal{X}$, also $\mathcal{Y} v G=\mathcal{X}$. ("quasi-F" means each dense cozero set is C^{*}-embedded.)

1. Introduction/PRELIMINARIES

In \mathbf{W} (or more generally), a hull class \mathbf{A} with hull operator \mathbf{a} is an isomorphisn closed object class \mathbf{A} in \mathbf{W} together with the operator a which satisfies: for each $G \in \mathbf{W}$ there is $G \leq \mathbf{a} G$ which is a unique minimum essential extension to an A-object. Then, any essential extension $G \leq A_{0} \in \mathbf{A}$ contains (a model of) $\mathbf{a} G$, as $\mathbf{a} G=\cap\left\{A \in \mathbf{A}: G \leq A \leq A_{0}\right\}$. If, further, \mathbf{A} is a (essential mono-) reflective subcategory (any $G \rightarrow A \in \mathbf{A}$ lifts (uniquely) over $\mathbf{a} G$), then any $G \leq A_{0} \in \mathbf{A}$ (not assumed essential) contains $\mathbf{a} G$. (See [2], [5], [17], [15].)

This paper considers the effect of the vector lattice hull/monoreflection on Yosida spaces.

[^0]For $G \in \mathbf{W}$, the Yosida space of G is the compact Hausdorff space $\mathcal{Y} G$ of ideals of G maximal for not containing the unit (the "values of the unit"), with the hullkernel topology. The Yosida representation of G is the embedding of G into the lattice $D(\mathcal{Y} G)$ (extended-real (almost finite) continuous functions) carrying the unit to the constant function 1 ; the image of G separates the points of $\mathcal{Y} G$, and $\mathcal{Y} G$ is unique for these features. We identify G with its image. For any $G \in \mathbf{W}$, G^{*} denotes the set of bounded elements of G. Thus, $G^{*}=G \cap C(\mathcal{Y} G) \in \mathbf{W}$ and $\mathcal{Y} G^{*}=\mathcal{Y} G$.

Further, "Y " is functorial: if $G \xrightarrow{\varphi} H \in \mathbf{W}$, there is the unique continuous $\mathcal{Y} G \stackrel{\mathcal{Y} \varphi}{\leftarrow} \mathcal{Y} H$ for which $\varphi(g)=g \circ \mathcal{Y} \varphi$, given as $\mathcal{Y} \varphi(M)=\varphi^{-1} M$. (See [18].) If φ is one-to-one, then $\mathcal{Y} \varphi$ is surjective.

The divisible hull/monoreflection, d, preserves \mathbf{W}, and for $G \in \mathbf{W}$, is $d G=$ $\{r g: g \in G, r \in \mathbb{Q}\} \leq D(\mathcal{Y} G)$ (as is easily seen). It results (by the uniqueness above, or otherwise) that $\mathcal{Y} d G=\mathcal{Y} G$. (Divisible hulls exist in torsion-free abelian groups, so in abelian ℓ-groups, and hence in archimedean ℓ-groups, thence in \mathbf{W}. See [2], [1].)

The vector lattice hull/monoreflection, v, exists for archimedean ℓ-groups and preserves W. (See [4], [3].) But (in contrast with d), $\{r g: g \in G, r \in \mathbb{R}\}$ may not be closed under addition in $D(\mathcal{Y} G)$ (see $\S 3$ below). This means that for the embedding $G \hookrightarrow v G$, the Yosida surjection $\mathcal{Y} G \underset{\leftarrow}{\leftarrow} \mathcal{Y} v G$ need not be one-to-one: "Y $v G \neq \mathcal{Y} G$ ". We shall reserve " τ " for this surjection (G being understood). This paper considers how - and the degree to which $-\tau$ can fail to be one-to-one. Our most incisive observation is the theorem in the abstract, Theorem 3.1 below, with elaboration in Theorem 3.5.

We shall need some facts about "covers" of compact spaces. See [11] and [24] for details.

In compact Hausdorff spaces, with all maps continuous: $\mathcal{X} \underset{\leftarrow}{\leftrightarrows} \mathcal{Y}$ is called irreducible if: \mathcal{F} proper closed in $\mathcal{Y} \Longrightarrow f(\mathcal{F}) \neq \mathcal{X}$. Then (\mathcal{Y}, f) is called a cover of \mathcal{X}. Such a map inversely preserves dense sets. The present relevance of these functions is: in \mathbf{W}, an extension $G \leq H$ is essential iff its Yosida map $\mathcal{Y} G \nleftarrow \mathcal{Y} H$ is a cover of $\mathcal{Y} G$; also, given $G \in \mathbf{W}$ and a cover $\mathcal{Y} G \stackrel{f}{\leftarrow} \mathcal{X}, G$ embeds into the lattice $D(\mathcal{X})$, as $g \mapsto g \circ f$. (See [19].)

We note a few items about covers. Given two covers of \mathcal{X}, say $\left(\mathcal{Y}_{i}, f_{i}\right), i=1,2$, if there is $\mathcal{Y}_{1} \stackrel{h}{\leftarrow} \mathcal{Y}_{2}$ with $f_{2}=f_{1} \circ h$, we write $\left(\mathcal{Y}_{1}, f_{1}\right) \leq\left(\mathcal{Y}_{2}, f_{2}\right)$, and say the two covers are "equivalent" if h is a homeomorphism. The collection of equivalence classes of covers of \mathcal{X} is a set, denoted $\operatorname{cov} \mathcal{X}$; it is also a complete lattice. Note
that, given \mathcal{X} and \mathcal{S} dense in \mathcal{X}, the unique $\mathcal{X} \underset{\leftarrow}{f} \beta \mathcal{S}$ extending the inclusion $\mathcal{S} \hookrightarrow \mathcal{X}$ has $(\beta \mathcal{S}, f) \in \operatorname{cov} \mathcal{X}$.

Various of these details will be used without explicit mention.

2. Real ideals

For $G \in \mathbf{W}$, the real ideal space of G is

$$
\mathcal{R} G \equiv\{M \in \mathcal{Y} G: G / M \leq \mathbb{R}\}
$$

So, viewing $G \leq D(\mathcal{Y} G)$,

$$
\begin{aligned}
\mathcal{R} G & =\{p \in \mathcal{Y} G: g(p) \in \mathbb{R}, \forall g \in G\} \\
& =\cap\left\{g^{-1}(\mathbb{R}): g \in G\right\}
\end{aligned}
$$

If $\mathcal{R} G$ is dense in $\mathcal{Y} G$, then G may be called an " ℓ-group of real-valued functions", because $\left.G \ni g \mapsto g\right|_{\mathcal{R} G} \in C(\mathcal{R} G)$ is one-to-one. If $G \in \mathbf{W}^{*}$ (meaning the unit is strong), then $\mathcal{R} G=\mathcal{Y} G$ and $G \leq C(\mathcal{Y} G)$.

We take note of the effect of v, or of any essential monoreflection, on $\mathcal{R} G$.
Proposition 2.1. ([9]). Suppose $\mathbf{W} \xrightarrow{a} \mathbf{A}$ is an essential monoreflection.
(a) $\forall G \leq a G$, the associated $\mathcal{Y} G \stackrel{\mu}{\leftarrow} \mathcal{Y} a G$ is a cover for which $\mu(\mathcal{Y} a G \backslash \mathcal{R} a G)=$ $\mathcal{Y} G \backslash \mathcal{R} G$, and μ restricts to a homeomorphism $\mathcal{R} G \leftarrow \mathcal{R} a G$.
(b) $\forall \mathcal{X}, C(\mathcal{X}) \in \mathbf{A}$.
(c) If $\mathcal{R} G$ is dense in $\mathcal{Y} G$, then $a G \leq C(\mathcal{R} G)$, so $\mathcal{Y} a G$ is a compactification of $\mathcal{R} G$.
(d) If $G \in \mathbf{W}^{*}$, then $a G \leq C(\mathcal{Y} G)$, so $\mathcal{Y} a G=\mathcal{Y} G$.

We are concerned here with the particular case of $a=v$, the vector lattice reflector. Our basic question is "What is (or can be) $\mathcal{Y \mathcal { G }} \stackrel{\tau}{\tau}_{\leftarrow} v G$?" Repeating some of the above for $a=v$:

Corollary 2.2. Suppose $G \in \mathbf{W}$, with $G \leq v G$ and its irreducible map $\mathcal{Y} G \stackrel{\tau}{\leftarrow}$ $\mathcal{Y} v G$.
(a) If $M \in \mathcal{R} G$ then $\left|\tau^{-1}(M)\right|=1$.
(b) If $\mathcal{R} G$ is dense in $\mathcal{Y} G$, then $v G \leq C(\mathcal{R} G)$ and $\mathcal{Y} v G$ is a compactification of $\mathcal{R} G$.

For this situation, one can pose some detailed questions, which we have not answered except in trivial cases.

Questions: For G as in Corollary 2.2,
(a) For any $M \in \mathcal{Y} G$, what does " $\left|\tau^{-1}(M)\right|=1$ " mean? Is there an algebraic condition on M or on G / M ?
(b) With $\mathcal{R} G$ proper and dense in $\mathcal{Y} G$, when is $v G=C(\mathcal{R} G)$? (When is $\mathcal{Y} v G=\beta \mathcal{R} G$?)

The inscrutability here partly explains why our approach to the question "What is $\mathcal{Y} G \underset{\leftarrow}{\tau} \mathcal{Y} v G ?$? has been converted by replacing $\mathcal{Y} G$ by a compact space \mathcal{X}, and then tailoring those G s for which $\mathcal{Y} G=X$ - as in the theorem of the abstract, whose proof we now turn to.

3. Quasi-F-spaces and the Theorem

A space \mathcal{X} is called quasi- $F(Q F)$ if each dense cozero-set in \mathcal{X} is C^{*}-embedded. These spaces were introduced (without naming) in [21], to the purpose: in $D(\mathcal{X})$, the partially defined operation $+($ and/or $\cdot)$ is fully defined iff \mathcal{X} is $Q F$. Then, clearly, $D(\mathcal{X}) \in \mathbf{W}$ and is a vector lattice.. The name $Q F$ was given in [7] where it is shown: for compact \mathcal{X}, there is the minimum $Q F$ cover, $\mathcal{X} \underset{ }{\sigma} Q F \mathcal{X}$, namely $Q F \mathcal{X}=\underset{\longleftarrow}{\lim }\{\beta S: S \in \operatorname{dcoz} \mathcal{X}\}$, where $\operatorname{dcoz} \mathcal{X}$ denotes the collection of dense cozero sets in \mathcal{X}. We reserve " σ " for this surjection. (See also [25] and [22] for considerable further information about " $Q F$ ".)

Thus, for $G \in \mathbf{W}, G$ embeds into $D(Q F \mathcal{Y} G)$ as $g \rightarrow g \circ \sigma$; we write $G \leq$ $D(Q F \mathcal{Y} G)$. We have $G \leq v G \leq D(Q F \mathcal{Y} G)$, representing an upper bound for $v G$. By Yosida, and cover theory, σ factors uniquely as $\mathcal{Y} \mathcal{G} \stackrel{\tau}{\leftrightarrows} v G \longleftrightarrow Q F \mathcal{Y} G$, representing an upper bound, in the sense of covers, for $\mathcal{Y} v G$. We show in Theorem 3.5 below that these upper bounds are, in a certain sense, "least".

Theorem 3.1. Suppose \mathcal{X} is a compact space. For each $G \in \mathbf{W}$ with $\mathcal{Y} G=\mathcal{X}$, also $\mathcal{Y} v G=\mathcal{X}$ if and only if \mathcal{X} is $Q F$.

Lemma 3.2 below is, in detail, the construction for the proof of Theorem 3.1. This will find further purpose. The construction is an elaboration of [13], Example 1.

Note that if \mathcal{X} is compact and $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$, then there are various $f \in D(\mathcal{X})^{+}$ with $f^{-1}(\mathbb{R})=\mathcal{S}$: for any $w \in C(\mathcal{X})^{+}$, with $\operatorname{coz} w=\mathcal{S}$, define $f \in D(\mathcal{X})$ as $1 / w$ on \mathcal{S} and $+\infty$ on $\mathcal{X} \backslash \mathcal{S}$.

Lemma 3.2. Suppose \mathcal{X} is a compact space. Suppose $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}, f \in D(\mathcal{X})^{+}$ with $f^{-1}(\mathbb{R})=\mathcal{S}$, and $u \in C^{*}(S)$. There is $G=G(f, u) \leq C(\mathcal{S})$ for which: $f \in G ; G^{*}=C(\mathcal{X})($ so $\mathcal{Y} G=\mathcal{X})$; and $u \in v G$. Since $v G \leq C(\mathcal{S})$, the natural
 $\beta \mathcal{S}$.

We first prove Theorem 3.1 from Lemma 3.2, then prove Lemma 3.2.
Proof of Theorem 3.1. If \mathcal{X} is not $Q F$, there is $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$ that is not C^{*} embedded in \mathcal{X} : there is $u \in C^{*}(\mathcal{S})$ that cannot be extended over \mathcal{X}. Take $f \in D(\mathcal{X})^{+}$with $f^{-1}(\mathbb{R})=\mathcal{S}$. Then, Lemma 3.2 provides a group $G=G(f, u)$, for which the mapping $\mathcal{Y} G{ }_{\leftrightarrows}^{\tau} \mathcal{Y} v G$ is not one-to-one: $\mathcal{Y} G \neq \mathcal{Y} v G$.

If \mathcal{X} is $Q F$, then $\mathcal{X}=Q F \mathcal{X}$, so when $\mathcal{Y} G=\mathcal{X}$ the usual $\mathcal{Y} G \leftrightarrow \mathcal{Y} v G \nleftarrow Q F \mathcal{Y} G$ is, in fact, $\mathcal{X}=\mathcal{Y} G \leq \mathcal{Y} v G \leq Q F \mathcal{X}=\mathcal{X}$.

Proof of Lemma 3.2. Let \mathcal{X}, \mathcal{S} and f be as stated. Then, $\mathcal{S}=\cup_{n} f^{-1}[0, n]$. For $g, h \in C(\mathcal{S})$, define:

$$
g \doteq h \text { if } \exists n \in \mathbb{N} \text { with } f(x)>n \Longrightarrow g(x)=h(x) .
$$

(Here, we say: " g and h are eventually equal, with respect to \mathcal{S}.")
Now let u be as stated, and let $\gamma \in \mathbb{R} \backslash \mathbb{Q}$. Define $G=G(f, u) \subseteq C(\mathcal{S})$:

$$
\begin{align*}
& g \in G \text { means } g \in C(\mathcal{S}) \text { and for some } a, b \in \mathbb{Z} \text { and }\left.w \in C(\mathcal{X})\right|_{\mathcal{S}} \\
& g \doteq a f+b \gamma(f+u)+w=(a+b \gamma) f+(b \gamma u+w)
\end{align*}
$$

(Note that this also depends upon γ, which seems immaterial.)
Note, first, that $f \in G(a=1, b=0, w=\mathbf{0})$ and $\left.C(\mathcal{X})\right|_{\mathcal{S}} \subseteq G(a=0=b)$. Clearly, $g \in G \Rightarrow-g \in G$, and if $g_{1}, g_{2} \in G$ are expressed (eventually) in the form (\dagger) then their sum eventually can be expressed in that form. So, G is a subgroup of $D(\mathcal{S})$.

Each member of G is either unbounded, in which case it is dominated, eventually, by the $(a+b \gamma) f$ term in (\dagger) (a and b cannot both be 0), or it is bounded $(a=b=0)$ and so is in $\left.C(\mathcal{X})\right|_{\mathcal{S}} \subseteq G$ (so, in fact, $\left.G^{*}=\left.C(\mathcal{X})\right|_{\mathcal{S}}\right)$. It follows that $G \in \mathbf{W}$, as we now demonstrate.

Suppose $g_{1}, g_{2} \in G: \quad g_{i}=\left(a_{i}+b_{i} \gamma\right) f(x)+\left(b_{i} \gamma u(x)+w_{i}(x)\right)$ whenever $f(x)>n_{i}$, for $i=1,2$.

Suppose g_{1} is unbounded. Then, $a_{1}+b_{1} \gamma \neq 0$, and either:

- $a_{1}+b_{1} \gamma>a_{2}+b_{2} \gamma$ (or the reverse) and so, eventually, $g_{1}>g_{2}$, and $g_{1} \vee g_{2} \doteq\left(a_{1}+b_{1} \gamma\right) f+\left(b_{1} \gamma u+w_{1}\right)$.
(The details.

$$
g_{1}-g_{2} \doteq\left[\left(a_{1}+b_{1} \gamma\right)-\left(a_{2}+b_{2} \gamma\right)\right] f+\left[\left(b_{1}-b_{2}\right) \gamma u+\left(w_{1}-w_{2}\right)\right]
$$

The second term is a function in $C^{*}(\mathcal{S})$ so there is $n \in \mathbb{N}$ which satisfies:

$$
\left|\left(b_{1}-b_{2}\right) \gamma u(x)+\left(w_{1}-w_{2}\right)(x)\right|<n \text { for all } x \in \mathcal{S}
$$

Now choose $m \in \mathbb{N}$ with

$$
m>n_{1} \vee n_{2} \vee \frac{n}{\left(a_{1}+b_{1} \gamma\right)-\left(a_{2}-b_{2} \gamma\right)}
$$

Now when $f(x)>m$, we have $\left(g_{1}-g_{2}\right)(x)>0$, so $g_{1} \vee g_{2} \doteq g_{1}$.)
Or,

- $a_{1}+b_{1} \gamma=a_{2}+b_{2} \gamma$, so $a_{1}=a_{2}$ and $b_{1}=b_{2}$; whence, eventually, $g_{1}-g_{2}=$ $w_{1}-w_{2}$ and we have: $g_{1} \vee g_{2} \doteq\left(a_{1}+b_{1} \gamma\right) f+b_{1} \gamma u+w_{1} \vee w_{2}$.
Suppose g_{1} and g_{2} are both bounded $\left(a_{1}=b_{1}=0=a_{2}=b_{2}\right)$. Then, eventually $g_{1} \vee g_{2} \doteq w_{1} \vee w_{2}$.

Thus, in every case $g_{1} \vee g_{2} \in G$, so $G \in \mathbf{W}$.
Observe that with $g \equiv f$ and $h \equiv \gamma(f+u)$, we have $\frac{1}{\gamma} h-g=u \in v G$.
We would like, have tried, to extend the construction in Theorem 3.1 to obtain the answer to $\left(\mathrm{Q}_{1}\right) \forall \mathcal{X} \exists G$ with $\mathcal{Y} G=\mathcal{X}$ and $\mathcal{Y} v G=Q F \mathcal{X}$? A first step might be extending Lemma 3.2 to: $\left(\mathrm{Q}_{2}\right) \forall \mathcal{S} \in \operatorname{dcoz} \mathcal{X}, \exists G(\mathcal{S})$ with $\mathcal{Y} G(\mathcal{S})=\mathcal{X}$ and $\mathcal{Y} v G(\mathcal{S})=\beta \mathcal{S}$? One tries to prove this via a construction like that in the proof of Lemma 3.2, but letting the u there range over all of $C^{*}(\mathcal{S})$, defining a set G to be all those functions $g \in G(\mathcal{S}, f, \gamma)$ for which there are $a, b \in \mathbb{Z}$, $w \in C(\mathcal{X})$ and some $u \in C^{*}(\mathcal{S})$ with $g \doteq a f+b \gamma(f+u)+w$. But, even using only two functions, u_{1} and u_{2}, this process fails to always yield a group: in many situations, the set G will contain two functions whose sum fails to be extendable over \mathcal{X}.

On the other hand, here is a partial answer to $\left(\mathrm{Q}_{2}\right)$.
Theorem 3.3. Suppose \mathcal{X} is compact, $\mathcal{S} \in \operatorname{dcoz}(\mathcal{X})$, and the cardinal of $C^{*}(\mathcal{S})$ is c (cardinal of the reals). Then there is $G \in W$ with $G \leq C(\mathcal{S}), \mathcal{Y} G=\mathcal{X}$, and $(v G)^{*}=C^{*}(\mathcal{S}) . \quad$ Thus $\mathcal{Y}_{v} G=\beta \mathcal{S}$.

Proof. \mathcal{S} is locally compact, so has its one-point compactification $\alpha \mathcal{S}=\mathcal{S} \cup\{\alpha\}$, and \mathcal{S} is σ-compact, so $\mathcal{S} \in \operatorname{dcoz} \alpha \mathcal{S}$. As explained at the end, the result for the general \mathcal{X} follows from the result for just $\mathcal{X}=\alpha \mathcal{S}$, which we now prove.

The method is that of Lemma 3.2, elaborated with:
Let \mathcal{H} be a Hamel basis for the reals with $1 \in \mathcal{H}$, and let $b: \mathcal{H} \rightarrow C^{*}(\mathcal{S})$ be a bijection with $b(1)=0$.

Now take $f \in C(\mathcal{S})^{+}$with extension in $D(\alpha \mathbb{N})$ (again " f "), having $f(\alpha)=+\infty$. For $h \in \mathcal{H}$, put $u(h) \equiv h \cdot(f+b(h)) \in C(\mathcal{S})$. Note that $u(h)=0$ iff $h=0$ iff $u(h)$ is bounded; and all $u(h) \in D(\alpha \mathbb{N})$ (by extension); $u(1)=f$.

Let \mathcal{U} consist of all finite sums $\sum f_{i} u\left(h_{i}\right)$ with the $r_{i} \in \mathbb{Q}$. This is the \mathbb{Q}-vector lattice in $C(\mathcal{S})$ generated by the $u(h)$'s. Let $u \in \mathcal{U}$:
$u=\sum r_{i} u\left(h_{i}\right)=\sum r_{i} h_{i}\left(f+b\left(h_{i}\right)\right)=\left(\sum r_{i} h_{i}\right) \cdot f+\sum r_{i} h_{i} b\left(h_{i}\right)=\gamma_{u} \cdot f+w$.
Note that w is bounded, and that u is bounded iff $\gamma_{u}=0$ iff all $r_{i}=0$ (by the \mathbb{Q}-linear independence) iff $u=0$. Thus $\mathcal{U} \subseteq D(\alpha \mathcal{S})$ (by extension).

Now define $G \subseteq C(\mathcal{S})$ as in Lemma 3.2: $g \in G$ means $g \doteq u+c$ for some $u \in \mathcal{U}$ and $c \in \mathbb{R} ; g$ is bounded iff $g \doteq c$. Evidently, G is a group, $G \subseteq D(\alpha \mathcal{S})$ (by extension), and G is a lattice as in the proof of Lemma 3.2. So we have $Y G=\alpha \mathcal{S}$.

For $v G \leq C(\mathcal{S})$, we have: For $h \neq 0, \frac{1}{h} u(h)-f=b(h) \in v G$. I.e., $C^{*}(\mathcal{S}) \leq$ $v G \leq C(\mathcal{S})$. Thus $\mathcal{Y} v G \leq \beta \mathcal{S}$.

Finally: Suppose $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$, i.e., \mathcal{X} is an arbitrary compactification of \mathcal{S}, instead of the above αS. Let $\alpha \mathcal{S} \stackrel{\tau}{\leftarrow} \mathcal{X}$ extend the identity on S. Let G be as constructed above, using $\alpha \mathcal{S}, G \approx G \circ \tau \leq D(\mathcal{X}) \cap C(\mathcal{S})$. Let $H \equiv$ $j m(G \circ \tau+C(\mathcal{X})) \leq D(\mathcal{X}) \cap C(\mathcal{S})$. (See $\S 4$ about " $j m$ ".) We have $H^{*}=C(\mathcal{X})$, so that $\mathcal{Y} H=\mathcal{X}$. (If this is not obvious, see [6], 2.6.) Since $G \leq H \leq C(\mathcal{S})$, we have $v G \leq v H \leq C(\mathcal{S})$ (see $\S 1) ; \mathcal{Y} v H=\beta \mathcal{S}$ follows.

Remark 3.4. a): Theorem 3.3 applies to any compactification \mathcal{X} of metrizable \mathcal{S} which is infinite, locally compact and σ-compact (for then \mathcal{S} is separable, so $\left.\left|C^{*}(\mathcal{S})\right|=c\right)$.
b): One wonders if Theorem 3.3 can be extended to $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$ (with $\left.\left|C^{*}(\mathcal{S})\right|=c\right) . \quad$ A particular case of this is $\mathcal{X}=[0,1], \mathcal{S}$ its irrational points, where $Q F \mathcal{X}$ is the projective cover of $[0,1]$.
c): Here is a very weak partial answer "yes" to (Q_{1}): "yes" for $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$, $\left|C^{*}(\mathcal{S})\right|=c, \mathcal{S}$ itself $Q F$, because the G produced in Theorem 3.3 has $\mathcal{Y} v G=\beta \mathcal{S}$ and $\beta \mathcal{S}=Q F \mathcal{X} . \quad$ Examples of such \mathcal{S} are $\mathcal{S}=\sum \mathcal{Y}_{n}$, with $\forall n \mathcal{Y}_{n}$ infinite compact $Q F$ with $\left|C\left(\mathcal{Y}_{n}\right)\right| \leq c$ (for then $\left|C^{*}(\mathcal{S})\right|=$ $\left.\prod_{n}\left|C\left(\mathcal{Y}_{n}\right)\right|=c^{\aleph_{0}}=c\right)$. Compact QF \mathcal{Y} with $|C(\mathcal{Y})| \leq c$ include $\mathcal{Y}=\beta \mathbb{N}$ and $\mathcal{Y}=\alpha D(m)$, where $D(m)$ is discrete of cardinal $m \leq c$.

On the other hand again, another close look at Lemma 3.2 reveals what might be called a weak answer to $\left(\mathrm{Q}_{1}\right)$ of a different sort, per the last sentence before Theorem 3.1. Given \mathcal{X}, we make G "closely tied" to \mathcal{X}, with $v G$ "very large"
in $D(Q F \mathcal{X})$; in particular, with $\mathcal{Y} v G=Q F \mathcal{X}$. Probably, refinement of this is possible; here, we only sketch the details.

Theorem 3.5. Suppose \mathcal{X} is a compact space. There is a family $\left\{G_{i}\right\}_{i \in I} \subseteq \mathbf{W}$ with the following properties.
a): For each $i \in I, \mathcal{Y} G_{i}=\mathcal{X}$; consequently, $G_{i} \leq v G_{i} \leq D(Q F \mathcal{X})$.

Let G be the sub- ℓ-group of $D(Q F \mathcal{X})$ generated by $\cup_{i \in I} G_{i}$.
b): G is order-cofinal in $D(Q F \mathcal{X})$.
c): $(v G)^{*}$ is uniformly dense in $C(Q F \mathcal{X})$. Thus, $\mathcal{Y} v G=Q F \mathcal{X}$.
d): $Q F \mathcal{X}=\vee_{i \in I} \mathcal{Y} v G_{i}=\mathcal{Y} v G$ (the sup in the sense of $\operatorname{cov} \mathcal{X}$).

Proof. Given $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$, Lemma 3.2 provides the groups $G(f, u) \leq C(\mathcal{S})$; relabel this $G(\mathcal{S}, f, u)$. Our index set, I, will consist of all such triples (\mathcal{S}, f, u) : $i \in I$ means $i=(\mathcal{S}, f, u)$ and $G_{i}=G(\mathcal{S}, f, u)$ with $\mathcal{Y} G_{i}=\mathcal{X}$. Thus, we have a).

We will use some details from [7], §3. For each $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$, we have the cover $\mathcal{X} \leftrightarrow \beta \mathcal{S} \leftrightarrow Q F \mathcal{X}$. Now, $Q F \mathcal{X}=\varliminf_{\leftrightarrows}\{\beta \mathcal{S}: \mathcal{S} \in \operatorname{dcoz} \mathcal{X}\}$, and

$$
Q F \mathcal{X}=\vee\{\beta \mathcal{S}: \mathcal{S} \in \operatorname{dcoz} \mathcal{X}\}
$$

expresses $Q F \mathcal{X}$ in the lattice $\operatorname{cov} \mathcal{X}$ (abusing notation). If $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$, then $\mathcal{X} \longleftrightarrow \beta \mathcal{S}$ gives an embedding $C(\mathcal{S}) \leq D(Q F \mathcal{X})$, and $\cup_{\mathcal{S} \in \text { dcoz } \mathcal{X}} C(\mathcal{S})$ is uniformly dense in $D(Q F \mathcal{X})$, thus order-cofinal, and $\cup_{\mathcal{S} \in \operatorname{dcoz} \mathcal{X}} C^{*}(S)$ is uniformly dense in $C(Q F \mathcal{X})$.

From these facts, and Lemma 3.2, our assertions will follow.
Fix \mathcal{S}. Set $\mathcal{S}^{\prime}=\left\{f \in D(\mathcal{X})^{+}: f^{-1} \mathbb{R}=\mathcal{S}\right\}$. Then \mathcal{S}^{\prime} " \subseteq " $C(\mathcal{S})$ and is order cofinal there. (Choose $f \in \mathcal{S}^{\prime}$; then $\forall g \in C(\mathcal{S}), f \vee g$ (really, $\left.f\right|_{\mathcal{S}} \vee g$) extends over $\mathcal{X} \backslash \mathcal{S}$ by defining $f \vee g(x)=+\infty$ there, so $f \vee g \in \mathcal{S}^{\prime}$.) Since each $f \in G(\mathcal{S}, f, u)$, we have $G_{\mathcal{S}} \equiv \underset{(f, u)}{\cup} G(\mathcal{S}, f, u)$, and thus $G=\vee_{i} G_{i}=\vee_{\mathcal{S}} G_{\mathcal{S}}$ is order cofinal in $D(Q F \mathcal{X})$. Hence, b).

Since $u \in v G(\mathcal{S}, f, u)$ always, we have $C^{*}(\mathcal{S}) \leq v G_{\mathcal{S}}$, and since $\cup_{\mathcal{S}} C^{*}(\mathcal{S})$ is uniformly dense in $C(Q F \mathcal{X})$, so is $\cup_{\mathcal{S}}\left(v G_{\mathcal{S}}\right)^{*}$, and hence also the larger $(v G)^{*}$. Thus, c).

Finally, $C^{*}(\mathcal{S}) \leq v G_{\mathcal{S}} \leq D(Q F \mathcal{X})$ yields $\beta \mathcal{S} \pi \mathcal{Y} v G_{\mathcal{S}} \leq Q F \mathcal{X}$ and, taking suprema in cov \mathcal{X}, we get $Q F \mathcal{X}=\vee_{\mathcal{S}} \mathcal{Y} v G_{\mathcal{S}} \leq \mathcal{Y} v G \leq Q F \mathcal{X}$. Thus, d).

4. Addenda

We take this opportunity to correct the following situation. In [13], Theorem 2(a) states: If A is a reduced archimedean f-ring (" $\mathbf{f r} \mathbf{A}$ object"), then its vector
lattice hull, $v A$, is a reduced archimedean f-algebra ("frAa object"). The proof there was inadequate.

If G is an archimedean ℓ-group ("Arch object"), its "essential completion" takes the form $G \leq D(\mathcal{X})$, where \mathcal{X} is extremally disconnected (so $D(\mathcal{X})$ is a vector lattice). A model of $v G$ is the sub-vector lattice of $D(\mathcal{X})$, generated by G. (See [4], [3].)

Note that when $D(\mathcal{X})$ is a group, it is also a ring, so is in $|\operatorname{fr} \mathbf{A}|)$. When $G \in|\operatorname{fr} \mathbf{A}|$, the embedding $G \leq D(\mathcal{X})$ can be an $\mathbf{f r} \mathbf{A}$-embedding; that this is so can be demonstrated using a representation by Bernau or Johnson - see the discussion in $\S \S 3.4$ and 5.3 in [12].

Proof of the theorem. Suppose $H \subseteq D(\mathcal{X})$, with \mathcal{X} extremally disconnected. Let $s H$ denote the sub-vector space of $D(\mathcal{X})$ generated by H :

$$
s H \equiv\left\{\sum r_{i} h_{i}: 1 \leq i \leq n \in \mathbb{N}, r_{i} \in \mathbb{R}, h_{i} \in H\right\}
$$

Note that if H is a subring of $D(\mathcal{X})$, then so is $s H$.
The sublattice of $D(\mathcal{X})$ generated by H is:

$$
m j H \equiv\left\{\bigwedge_{j} \bigvee_{i} h_{i j}: m, n \in \mathbb{N}, 1 \leq i \leq m, 1 \leq j \leq n, h_{i j} \in H\right\}
$$

If H is a subgroup of $D(\mathcal{X})$, then $m j H$ is a subgroup; also, if H is a subring of $D(\mathcal{X})$, then $m j H$ is a subring. (See Theorem 2.1 in [14].) In any vector lattice L it is true that ([23], Theorem 11.5(vi)): for any $a, b \in L$ and $r \in \mathbb{R}$, the following identities, and their duals, hold:

$$
\begin{aligned}
& r(a \vee b)=r a \vee r b \text { when } r \geq 0 \\
& r(a \vee b)=r a \wedge r b \text { when } r \leq 0
\end{aligned}
$$

It follows that $m j H$ is a vector lattice if H is a sub-vector space of $D(\mathcal{X})$ and it is a sub- f-ring of $D(\mathcal{X})$ when H is a sub-algebra of $D(\mathcal{X})$.

Thus, if $A \in|f r A|$, with $A \leq D(\mathcal{X})$, then

$$
v A=m j(s A)
$$

so $v A \in|\mathbf{f r} \mathbf{A}|$.
The proof of the theorem in [13] was inadequate in that we mis-interpreted [4] to say: for $G \leq D(\mathcal{X}), v G=s G$. We thank G. Buskes for questioning this.

Note that, in the argument above, the requirement that \mathcal{X} be extremally disconnected is stronger than necessary: " \mathcal{X} is $Q F$ " will do and - as we have seen less than that will not do.

In another vein, we have recently been considering questions concerning subsets of $A \subseteq D(\mathcal{X})$ and functions $f \in C(\mathbb{R})$ for which $f \circ A \subseteq A$ (which means $g \in A \Longrightarrow g^{-1}(\mathbb{R}) \xrightarrow{g} \mathbb{R} \xrightarrow{f} R$ extends to a function in A (one says that A is closed under composition with f)). This notion, along with its analogs for $f \in C\left(\mathbb{R}^{n}\right), n=2,3, \cdots, \omega$, has been used to good effect in similar settings (e.g.,[20], [9], [10], [16]). Here, we include the following very easy result, which complements Theorem 3.1 above.

Theorem 4.1. For \mathcal{X} compact, $C^{*}(\mathbb{R}) \circ D(\mathcal{X}) \subseteq D(\mathcal{X})$ iff \mathcal{X} is $Q F$.
Proof. Suppose $C^{*}(\mathbb{R}) \circ D(\mathcal{X}) \subseteq D(\mathcal{X})$ and let $\mathcal{S} \in \operatorname{dcoz} \mathcal{X}$. If $g \in C^{*}(\mathcal{S})$ and $\mathbb{N} \ni n \geq|g(x)| \forall x \in \mathcal{S}$, set $f \equiv\left[(-\mathbf{n}) \vee \mathbf{1}_{\mathbb{R}}\right] \wedge \mathbf{n} \in \mathbf{C}^{*}(\mathbb{R})$, where $\mathbf{1}_{\mathbb{R}}(r)=r$ for each $r \in \mathbb{R}$. Then $f \circ g$ extends to a function on $D(\mathcal{X})$ which must be g, since $f \circ g=g$ on \mathcal{S}.

Now suppose \mathcal{X} is $Q F, g \in D(\mathcal{X})$, and $f \in C^{*}(\mathbb{R})$. Then $g^{-1}(\mathbb{R}) \xrightarrow{g} \mathbb{R} \xrightarrow{f}$ $\mathbb{R} \in C^{*}\left(g^{-1}(\mathbb{R})\right)$, so extends over \mathcal{X}, since $g^{-1}(\mathbb{R}) \in \operatorname{dcoz} \mathcal{X}$, so is C^{*}-embedded in \mathcal{X}.

Acknowledgements. We thank the referee for a careful reading and valuable suggestions.

References

[1] Anderson, Marlow; Conrad, Paul Epicomplete l-groups. Algebra Universalis 12 (1981), no. 2, 224-241.
[2] Bigard, Alain; Keimel, Klaus; Wolfenstein, Samuel Groupes et Anneaux Reticules. Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin-New York (1977)
[3] Bleier, Roger D. Minimal vector lattice covers. Bull. Austral. Math. Soc. 5 (1971), 331-335
[4] Conrad, Paul F. Minimal vector lattice covers. Bull. Austral. Math. Soc. 4 (1971), 35-39
[5] Conrad, P. F. The hulls of representable ℓ-groups and f-rings. J. Austral. Math. Soc. 26 (1973), 385-415
[6] Carrera, R. E.; Hager, A. W. B-saturated hull classes in ℓ-groups and covering classes of spaces. Appl. Categor. Struct. 23 (2015), 709-723
[7] Dashiell, F.; Hager, A.; Henriksen, M. Order-Cauchy completions of rings and vector lattices of continuous functions. Canad J. Math. 2 (1980), no. 3, 657-685
[8] Gillman, Leonard, Jerison, Meyer, Rings of Continuous Functions, Reprint of the 1960 edition. Graduate Texts in Mathematics, No. 43. Springer-Verlag, New York-Heidelberg, 1976
[9] Hager, Anthony W. $C(\mathcal{X})$ has no proper functorial hulls. Rings of Continuous Functions (Cincinnati, Ohio, 1982), 149-164, Lecture Notes in Pure and Appl. Math., 95, Dekker, New York, 1985
[10] Hager, Anthony W. Algebraic closures of ℓ-groups of continuous functions. Rings of Continuous Functions (Cincinnati, Ohio, 1982), 165-194, Lecture Notes in Pure and Appl. Math., 95, Dekker, New York, 1985
[11] Hager, Anthony W. Minimal covers of topological spaces. Papers on general topology and related category theory and topological algebra (New York, 1985-1987), 44-59, Ann. New York Acad. Sci., 552. New York Acad. Sci., New York, 1989
[12] Hager, Anthony W. Some unusual epicomplete archimedean lattce-ordered groups, Proc. Amer. Math. Soc., Vol. 143 (2015), No. 5, 1969-1980
[13] Hager, A. W.; Johnson, D. G. Adjoining an identity to a reduced archimedean f-ring. II. Appl. Categ. Structures 15 (2007), no. 1-2, 35-47
[14] Hager, A. W.; Johnson, D. G. Some comments and examples on generation of (hyper)archimedean ℓ-groups and f-rings. Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), Fascicule Special. 75-100
[15] Hager, A. W.; Madden, James J. Essential reflections versus minimal embeddings. J. Pure Appl. Algebra 37 (1985), no. 1, 27-32
[16] Hager, Anthony W.; Madden, James J. The H-closed monoreflections, implicit operations, and countable composition, in archimedean lattice-ordered groups with weak unit. Applied Categorical Structures, 24 (2016), 605-617
[17] Hager, Anthony W.; Martinez, Jorge Hulls for various kinds of α-completeness in Archimedean lattice-ordered groups. Order 16 (1999), no. 1, 89-103.
[18] Hager, Anthony W.; Robertson, Lewis C. Representing and ringifying a Riesz space. Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), 411-431. Academic Pres, London, 1977
[19] Hager, Anthony W.; Robertson, Lewis C. On the embedding into a ring of an Archimedean ℓ-group. Canad. J. Math. 31 (1979), no. 1, 1-8
[20] Henriksen, M.; Isbell, J. R.; Johnson, D. G. Residue class fields of lattice-ordered algebras. Fund. Math. 50 (1961/1962), 107-117
[21] Henriksen, M.; Johnson, D. G. On the structure of a class of archimedean lattice-ordered algebras. Fund. Math. 50 (1961/1962),73-94
[22] Henriksen, M.; Vermeer, J.; Woods, R. G. Quasi F-covers of Tychonoff spaces. Trans. Amer. Math. Soc. 303 (1987), no. 2, 779-803
[23] Luxemburg, W. A. J.; Zaanen, A. C. Riesz Spaces I. North Holland, Amsterdam, The Netherlands (1971)
[24] Porter, Jack R.; Woods, R. Grant Extensions and Absolutes of Hausdorff Spaces. SpringerVerlag, New York, 1988. xiv+856 pp. ISBN: 0-387-96212-3
[25] Zaharov, V. K.; Koldunov, A. V. Sequential absolute and its characterization. Dokl. Akad. Nauk SSSR 253 (1980), no. 2, 280-284

Received May 19, 2016
Revised version received August 3, 2016 Second revision received September 5, 2016

Dept. of Math, Univ. of Denver, Denver, CO 80208, USA
E-mail address: rball@du.edu
Dept. of Math and CS, Wesleyan Univ. Middletown, CT 06459, USA
E-mail address: ahager@wesleyan.edu
Current address: 4351 Nambe Arc, Las Cruces, NM 88011, USA
E-mail address: dgjohnson@member.ams.org
Dept. of Math, LSU, Baton Rouge, LA 70803, USA
E-mail address: jamesjmadden@gmail.com
Wilkes Honors College, Florida Atlantic Univ., Jupiter, FL 33458, USA
E-mail address: warren.mcgovern@fau.edu

[^0]: 2010 Mathematics Subject Classification. 06F20, 46A40, 54B35, 54G05, 18A40, 46E05, 54C30.

 Key words and phrases. Archimedean ℓ-group, vector lattice reflection, Yosida space, quasi-F-space.

