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Abstract. W is the category of archimedean `-groups with distinguished

weak order unit. For G ∈W, we have the contravariantly functorial Yosida

space YG. For an embedding G ≤ H, the resulting YG← YH is surjective;

when this is one-to-one, we write “YH = YG”. This is the case with the

divisible hull G ≤ dG, where, always, YdG = YG; however for the vector

lattice hull G ≤ vG, we frequently have YvG 6= YG. Theorem. A compact

space X is quasi-F if and only if: ∀G ∈W with YG = X , also YvG = X .

(“quasi-F” means each dense cozero set is C∗-embedded.)

1. Introduction/preliminaries

In W (or more generally), a hull class A with hull operator a is an isomorphisn

closed object class A in W together with the operator a which satisfies: for each

G ∈ W there is G ≤ aG which is a unique minimum essential extension to an

A-object. Then, any essential extension G ≤ A0 ∈ A contains (a model of) aG,

as aG = ∩{A ∈ A : G ≤ A ≤ A0} . If, further, A is a (essential mono-) reflective

subcategory (any G → A ∈ A lifts (uniquely) over aG), then any G ≤ A0 ∈ A

(not assumed essential) contains aG. (See [2], [5], [17], [15].)

This paper considers the effect of the vector lattice hull/monoreflection on

Yosida spaces.
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For G ∈W, the Yosida space of G is the compact Hausdorff space YG of ideals

of G maximal for not containing the unit (the “values of the unit”), with the hull-

kernel topology. The Yosida representation of G is the embedding of G into the

lattice D (YG) (extended-real (almost finite) continuous functions) carrying the

unit to the constant function 1; the image of G separates the points of YG, and

YG is unique for these features. We identify G with its image. For any G ∈W,

G∗ denotes the set of bounded elements of G. Thus, G∗ = G∩C (YG) ∈W and

YG∗ = YG.
Further, “Y” is functorial: if G

ϕ→ H ∈ W, there is the unique continuous

YG Yϕ← YH for which ϕ (g) = g ◦ Yϕ, given as Yϕ (M) = ϕ−1M . (See [18].) If ϕ

is one-to-one, then Yϕ is surjective.

The divisible hull/monoreflection, d, preserves W, and for G ∈ W, is dG =

{rg : g ∈ G, r ∈ Q} ≤ D (YG) (as is easily seen). It results (by the uniqueness

above, or otherwise) that YdG = YG. (Divisible hulls exist in torsion-free abelian

groups, so in abelian `-groups, and hence in archimedean `-groups, thence in W.

See [2], [1].)

The vector lattice hull/monoreflection, v, exists for archimedean `-groups and

preserves W. (See [4], [3].) But (in contrast with d), {rg : g ∈ G, r ∈ R} may

not be closed under addition in D (YG) (see §3 below). This means that for the

embedding G ↪→ vG, the Yosida surjection YG τ← YvG need not be one-to-one:

“YvG 6= YG”. We shall reserve “τ” for this surjection (G being understood).

This paper considers how - and the degree to which - τ can fail to be one-to-one.

Our most incisive observation is the theorem in the abstract, Theorem 3.1 below,

with elaboration in Theorem 3.5.

We shall need some facts about “covers” of compact spaces. See [11] and [24]

for details.

In compact Hausdorff spaces, with all maps continuous: X
f
� Y is called

irreducible if: F proper closed in Y =⇒ f (F) 6= X . Then (Y, f) is called a cover

of X . Such a map inversely preserves dense sets. The present relevance of these

functions is: in W, an extension G ≤ H is essential iff its Yosida map YG� YH
is a cover of YG; also, given G ∈W and a cover YG f← X , G embeds into the

lattice D (X ) , as g 7→ g ◦ f . (See [19].)

We note a few items about covers. Given two covers of X , say (Yi, fi), i = 1, 2,

if there is Y1
h← Y2 with f2 = f1 ◦h, we write (Y1, f1) ≤ (Y2, f2), and say the two

covers are “equivalent” if h is a homeomorphism. The collection of equivalence

classes of covers of X is a set, denoted covX ; it is also a complete lattice. Note
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that, given X and S dense in X , the unique X
f
� βS extending the inclusion

S ↪→ X has (βS, f) ∈ covX .

Various of these details will be used without explicit mention.

2. Real ideals

For G ∈W, the real ideal space of G is

RG ≡ {M ∈ YG : G/M ≤ R}

So, viewing G ≤ D (YG) ,

RG = {p ∈ YG : g (p) ∈ R, ∀ g ∈ G}

= ∩
{
g−1 (R) : g ∈ G

}
.

If RG is dense in YG, then G may be called an “`-group of real-valued functions”,

because G 3 g 7→ g |RG ∈C (RG) is one-to-one. If G ∈W∗ (meaning the unit is

strong), then RG = YG and G ≤ C (YG).

We take note of the effect of v, or of any essential monoreflection, on RG.

Proposition 2.1. ([9]). Suppose W
a→ A is an essential monoreflection.

(a) ∀ G ≤ aG, the associated YG µ← YaG is a cover for which µ (YaGrRaG) =

YGrRG, and µ restricts to a homeomorphism RG← RaG.
(b) ∀ X , C (X ) ∈ A.

(c) If RG is dense in YG, then aG ≤ C (RG) , so YaG is a compactification

of RG.
(d) If G ∈W∗, then aG ≤ C (YG), so YaG = YG.

We are concerned here with the particular case of a = v, the vector lattice

reflector. Our basic question is “What is (or can be) YG τ← YvG?” Repeating

some of the above for a = v :

Corollary 2.2. Suppose G ∈W, with G ≤ vG and its irreducible map YG τ←
YvG.

(a) If M ∈ RG then
∣∣τ−1 (M)

∣∣ = 1.

(b) If RG is dense in YG, then vG ≤ C (RG) and YvG is a compactification

of RG.

For this situation, one can pose some detailed questions, which we have not

answered except in trivial cases.
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Questions: For G as in Corollary 2.2,

(a) For any M ∈ YG, what does “
∣∣τ−1 (M)

∣∣ = 1” mean? Is there an

algebraic condition on M or on G/M?

(b) With RG proper and dense in YG, when is vG = C (RG)? (When

is YvG = βRG?)

The inscrutability here partly explains why our approach to the question

“What is YG
τ
� YvG?” has been converted by replacing YG by a compact space

X , and then tailoring those Gs for which YG = X - as in the theorem of the

abstract, whose proof we now turn to.

3. Quasi-F-spaces and the Theorem

A space X is called quasi-F ( QF ) if each dense cozero-set in X is C∗-embedded.

These spaces were introduced (without naming) in [21], to the purpose: in D (X ),

the partially defined operation + (and/or ·) is fully defined iff X is QF . Then,

clearly, D (X ) ∈ W and is a vector lattice.. The name QF was given in [7]

where it is shown: for compact X , there is the minimum QF cover, X
σ
� QFX ,

namely QFX = lim←−{βS : S ∈ dcozX}, where dcozX denotes the collection of

dense cozero sets in X . We reserve “σ” for this surjection. (See also [25] and

[22] for considerable further information about “QF”.)

Thus, for G ∈ W, G embeds into D (QFYG) as g → g ◦ σ; we write G ≤
D (QFYG). We have G ≤ vG ≤ D (QFYG), representing an upper bound for

vG. By Yosida, and cover theory, σ factors uniquely as YG
τ
� YvG � QFYG,

representing an upper bound, in the sense of covers, for YvG. We show in

Theorem 3.5 below that these upper bounds are, in a certain sense, “least”.

Theorem 3.1. Suppose X is a compact space. For each G ∈W with YG = X ,

also YvG = X if and only if X is QF .

Lemma 3.2 below is, in detail, the construction for the proof of Theorem 3.1.

This will find further purpose. The construction is an elaboration of [13], Example

1.

Note that if X is compact and S ∈ dcozX , then there are various f ∈ D (X )
+

with f−1 (R) = S: for any w ∈ C (X )
+
, with cozw = S, define f ∈ D (X ) as 1/w

on S and +∞ on X r S.

Lemma 3.2. Suppose X is a compact space. Suppose S ∈ dcozX , f ∈ D (X )
+

with f−1 (R) = S, and u ∈ C∗ (S). There is G = G (f, u) ≤ C (S) for which:

f ∈ G; G∗ = C (X ) (so YG = X ); and u ∈ vG. Since vG ≤ C (S), the natural
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map X � βS (Čech-Stone extension of S ↪→ X ) factors as X = YG
τ
� YvG �

βS.

We first prove Theorem 3.1 from Lemma 3.2, then prove Lemma 3.2.

Proof of Theorem 3.1. If X is not QF , there is S ∈ dcozX that is not C∗-

embedded in X : there is u ∈ C∗ (S) that cannot be extended over X . Take

f ∈ D (X )
+

with f−1 (R) = S. Then, Lemma 3.2 provides a group G = G (f, u) ,

for which the mapping YG
τ
� YvG is not one-to-one: YG 6= YvG.

If X is QF , then X = QFX , so when YG = X the usual YG� YvG� QFYG
is, in fact, X = YG ≤ YvG ≤ QFX = X . �

Proof of Lemma 3.2. Let X ,S and f be as stated. Then, S = ∪nf−1 [0, n] .

For g, h ∈ C (S), define:

g
.
= h if ∃ n ∈ N with f (x) > n =⇒ g (x) = h (x) .

(Here, we say: “g and h are eventually equal, with respect to S.”)

Now let u be as stated, and let γ ∈ RrQ. Define G = G (f, u) ⊆ C (S):

g ∈ G means g ∈ C (S) and for some a, b ∈ Z and w ∈ C (X ) |S ,
g
.
= af + bγ (f + u) + w = (a+ bγ) f + (bγu+ w) (†)

(Note that this also depends upon γ, which seems immaterial.)

Note, first, that f ∈ G (a = 1, b = 0, w = 0) and C (X ) |S⊆ G (a = 0 = b).

Clearly, g ∈ G⇒ −g ∈ G, and if g1, g2 ∈ G are expressed (eventually) in the form

(†) then their sum eventually can be expressed in that form. So, G is a subgroup

of D (S).

Each member of G is either unbounded, in which case it is dominated, even-

tually, by the (a+ bγ) f term in (†) (a and b cannot both be 0), or it is bounded

(a = b = 0) and so is in C (X ) |S⊆ G (so, in fact, G∗ = C (X ) |S). It follows that

G ∈W, as we now demonstrate.

Suppose g1, g2 ∈ G: gi = (ai + biγ) f (x) + (biγu (x) + wi (x)) whenever

f (x) > ni, for i = 1, 2.

Suppose g1 is unbounded. Then, a1 + b1γ 6= 0, and either:

• a1 + b1γ > a2 + b2γ (or the reverse) and so, eventually, g1 > g2, and

g1 ∨ g2
.
= (a1 + b1γ) f + (b1γu+ w1).

(The details.

g1 − g2
.
= [(a1 + b1γ)− (a2 + b2γ)] f + [(b1 − b2) γu+ (w1 − w2)] .
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The second term is a function in C∗ (S) so there is n ∈ N which satisfies:

|(b1 − b2) γu (x) + (w1 − w2) (x)| < n for all x ∈ S.

Now choose m ∈ N with

m > n1 ∨ n2 ∨
n

(a1 + b1γ)− (a2 − b2γ)
.

Now when f (x) > m, we have (g1 − g2) (x) > 0, so g1 ∨ g2
.
= g1.)

Or,

• a1 +b1γ = a2 +b2γ, so a1 = a2 and b1 = b2; whence, eventually, g1−g2 =

w1 − w2 and we have: g1 ∨ g2
.
= (a1 + b1γ) f + b1γu+ w1 ∨ w2.

Suppose g1 and g2 are both bounded (a1 = b1 = 0 = a2 = b2). Then,

eventually g1 ∨ g2
.
= w1 ∨ w2.

Thus, in every case g1 ∨ g2 ∈ G, so G ∈W.

Observe that with g ≡ f and h ≡ γ (f + u) , we have 1
γh− g = u ∈ vG. �

We would like, have tried, to extend the construction in Theorem 3.1 to obtain

the answer to (Q1) ∀ X ∃ G with YG = X and YvG = QFX ? A first step

might be extending Lemma 3.2 to: (Q2) ∀ S ∈ dcozX , ∃ G (S) with YG (S) = X
and YvG (S) = βS? One tries to prove this via a construction like that in the

proof of Lemma 3.2, but letting the u there range over all of C∗ (S), defining

a set G to be all those functions g ∈ G (S, f, γ) for which there are a, b ∈ Z ,

w ∈ C (X ) and some u ∈ C∗ (S) with g
.
= af + bγ (f + u) + w. But, even using

only two functions, u1 and u2, this process fails to always yield a group: in many

situations, the set G will contain two functions whose sum fails to be extendable

over X .

On the other hand, here is a partial answer to (Q2).

Theorem 3.3. Suppose X is compact, S ∈ dcoz(X ), and the cardinal of C∗(S)

is c (cardinal of the reals). Then there is G ∈W with G ≤ C(S), YG = X , and

(vG)∗ = C∗(S). Thus YvG = βS.

Proof. S is locally compact, so has its one-point compactification αS = S∪{α},
and S is σ-compact, so S ∈ dcozαS. As explained at the end, the result for the

general X follows from the result for just X = αS, which we now prove.

The method is that of Lemma 3.2, elaborated with:

Let H be a Hamel basis for the reals with 1 ∈ H, and let b : H → C∗(S) be a

bijection with b(1) = 0.
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Now take f ∈ C(S)+ with extension in D(αN) (again “f”), having f(α) = +∞.

For h ∈ H, put u(h) ≡ h · (f + b(h)) ∈ C(S). Note that u(h) = 0 iff h = 0 iff

u(h) is bounded; and all u(h) ∈ D(αN) (by extension); u(1) = f .

Let U consist of all finite sums
∑
fiu(hi) with the ri ∈ Q. This is the Q-vector

lattice in C(S) generated by the u(h)’s. Let u ∈ U :

u =
∑

riu(hi) =
∑

rihi(f + b(hi)) =
(∑

rihi

)
· f +

∑
rihib(hi) = γu · f +w.

Note that w is bounded, and that u is bounded iff γu = 0 iff all ri = 0 (by the

Q-linear independence) iff u = 0. Thus U ⊆ D(αS) (by extension).

Now define G ⊆ C(S) as in Lemma 3.2: g ∈ G means g=̇u + c for some

u ∈ U and c ∈ R; g is bounded iff g=̇c. Evidently, G is a group, G ⊆ D(αS)

(by extension), and G is a lattice as in the proof of Lemma 3.2. So we have

Y G = αS.

For vG ≤ C(S), we have: For h 6= 0, 1
hu(h) − f = b(h) ∈ vG. I.e., C∗(S) ≤

vG ≤ C(S). Thus YvG ≤ βS.

Finally: Suppose S ∈ dcozX , i.e., X is an arbitrary compactification of S,

instead of the above αS. Let αS τ←− X extend the identity on S. Let G

be as constructed above, using αS, G ≈ G ◦ τ ≤ D(X ) ∩ C(S). Let H ≡
jm(G ◦ τ +C(X )) ≤ D(X )∩C(S). (See §4 about “jm”.) We have H∗ = C(X ),

so that YH = X . (If this is not obvious, see [6], 2.6.) Since G ≤ H ≤ C(S), we

have vG ≤ vH ≤ C(S) (see §1); YvH = βS follows. �

Remark 3.4. a): Theorem 3.3 applies to any compactification X of metriz-

able S which is infinite, locally compact and σ-compact (for then S is

separable, so |C∗(S)| = c).

b): One wonders if Theorem 3.3 can be extended to S ∈ dcozX (with

|C∗(S)| = c). A particular case of this is X = [0, 1], S its irrational

points, where QFX is the projective cover of [0, 1].

c): Here is a very weak partial answer “yes” to (Q1): “yes” for S ∈ dcozX ,

|C∗(S)| = c, S itself QF , because the G produced in Theorem 3.3 has

YvG = βS and βS = QFX . Examples of such S are S =
∑
Yn,

with ∀n Yn infinite compact QF with |C(Yn)| ≤ c (for then |C∗(S)| =∏
n |C(Yn)| = cℵ0 = c). Compact QF Y with |C(Y)| ≤ c include Y = βN

and Y = αD(m), where D(m) is discrete of cardinal m ≤ c.

On the other hand again, another close look at Lemma 3.2 reveals what might

be called a weak answer to (Q1) of a different sort, per the last sentence before

Theorem 3.1. Given X , we make G “closely tied” to X , with vG “very large”
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in D (QFX ); in particular, with YvG = QFX . Probably, refinement of this is

possible; here, we only sketch the details.

Theorem 3.5. Suppose X is a compact space. There is a family {Gi}i∈I ⊆W

with the following properties.

a): For each i ∈ I, YGi = X ; consequently, Gi ≤ vGi ≤ D (QFX ) .

Let G be the sub-`-group of D (QFX ) generated by ∪i∈IGi.
b): G is order-cofinal in D (QFX ).

c): (vG)
∗

is uniformly dense in C (QFX ). Thus, YvG = QFX .

d): QFX = ∨i∈IYvGi = YvG (the sup in the sense of covX ).

Proof. Given S ∈dcozX , Lemma 3.2 provides the groups G (f, u) ≤ C (S); re-

label this G (S, f, u). Our index set, I, will consist of all such triples (S,f, u):

i ∈ I means i = (S, f, u) and Gi = G (S, f, u) with YGi = X . Thus, we have a).

We will use some details from [7], §3. For each S ∈ dcozX , we have the cover

X � βS �QFX . Now, QFX =lim←−{βS : S ∈dcozX} , and

QFX = ∨{βS : S ∈dcozX}

expresses QFX in the lattice covX (abusing notation). If S ∈ dcozX , then

X � βS gives an embedding C (S) ≤ D (QFX ), and ∪S∈ dcozXC (S) is uniformly

dense in D (QFX ) , thus order-cofinal, and ∪S∈ dcozXC
∗ (S) is uniformly dense

in C (QFX ).

From these facts, and Lemma 3.2, our assertions will follow.

Fix S. Set S ′ =
{
f ∈ D (X )

+
: f−1R = S

}
. Then S ′ “⊆” C (S) and is

order cofinal there. (Choose f ∈ S ′; then ∀ g ∈ C (S), f ∨ g (really, f |S ∨g)

extends over X \ S by defining f ∨ g (x) = +∞ there, so f ∨ g ∈ S ′.) Since each

f ∈ G (S, f, u), we have GS ≡ ∪
(f,u)

G (S,f, u) , and thus G = ∨iGi = ∨SGS is

order cofinal in D (QFX ). Hence, b).

Since u ∈ vG (S, f, u) always, we have C∗ (S) ≤ vGS , and since ∪SC∗ (S) is

uniformly dense in C (QFX ), so is ∪S (vGS)
∗
, and hence also the larger (vG)

∗
.

Thus, c).

Finally, C∗ (S) ≤ vGS ≤ D (QFX ) yields βS � YvGS ≤ QFX and, taking

suprema in covX , we get QFX = ∨SYvGS ≤ YvG ≤ QFX . Thus, d). �

4. Addenda

We take this opportunity to correct the following situation. In [13], Theorem

2(a) states: If A is a reduced archimedean f -ring (“frA object”), then its vector
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lattice hull, vA, is a reduced archimedean f -algebra (“frAa object”). The proof

there was inadequate.

If G is an archimedean `-group (“Arch object”), its “essential completion”

takes the form G ≤ D (X ), where X is extremally disconnected (so D (X ) is a

vector lattice). A model of vG is the sub-vector lattice of D (X ), generated by

G. (See [4], [3].)

Note that when D (X ) is a group, it is also a ring, so is in |frA|). When

G ∈ |frA|, the embedding G ≤ D (X ) can be an frA-embedding; that this is

so can be demonstrated using a representation by Bernau or Johnson - see the

discussion in §§3.4 and 5.3 in [12].

Proof of the theorem. SupposeH ⊆ D (X ), with X extremally disconnected.

Let sH denote the sub-vector space of D (X ) generated by H :

sH ≡ {
∑
rihi : 1 ≤ i ≤ n ∈ N, ri ∈ R, hi ∈ H} .

Note that if H is a subring of D (X ), then so is sH.

The sublattice of D (X ) generated by H is:

mjH ≡

{∧
j

∨
i

hij : m,n ∈ N, 1 ≤ i ≤ m, 1 ≤ j ≤ n, hij ∈ H

}
.

If H is a subgroup of D (X ) , then mjH is a subgroup; also, if H is a subring

of D (X ), then mjH is a subring. (See Theorem 2.1 in [14].) In any vector

lattice L it is true that ( [23], Theorem 11.5(vi)): for any a, b ∈ L and r ∈ R, the

following identities, and their duals, hold:

r (a ∨ b) = ra ∨ rb when r ≥ 0,

r (a ∨ b) = ra ∧ rb when r ≤ 0.

It follows that mjH is a vector lattice if H is a sub-vector space of D (X ) and it

is a sub-f -ring of D (X ) when H is a sub-algebra of D (X ) .

Thus, if A ∈ |frA|, with A ≤ D (X ), then

vA = mj (sA) ,

so vA ∈ |frA| . �

The proof of the theorem in [13] was inadequate in that we mis-interpreted [4]

to say: for G ≤ D (X ), vG = sG. We thank G. Buskes for questioning this.

Note that, in the argument above, the requirement that X be extremally dis-

connected is stronger than necessary: “X is QF” will do and - as we have seen -

less than that will not do.
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In another vein, we have recently been considering questions concerning subsets

of A ⊆ D (X ) and functions f ∈ C (R) for which f ◦ A ⊆ A (which means

g ∈ A =⇒ g−1 (R)
g−→ R f−→ R extends to a function in A (one says that A

is closed under composition with f)). This notion, along with its analogs for

f ∈ C (Rn), n = 2, 3, · · ·, ω, has been used to good effect in similar settings

(e.g.,[20], [9], [10], [16]). Here, we include the following very easy result, which

complements Theorem 3.1 above.

Theorem 4.1. For X compact, C∗ (R) ◦D (X ) ⊆ D (X ) iff X is QF .

Proof. Suppose C∗ (R) ◦D (X ) ⊆ D (X ) and let S ∈ dcozX . If g ∈ C∗ (S) and

N 3 n ≥ |g (x)| ∀ x ∈ S, set f ≡ [(−n)∨1R]∧n ∈ C∗ (R), where 1R (r) = r for

each r ∈ R. Then f ◦ g extends to a function on D (X ) which must be g, since

f ◦ g = g on S.

Now suppose X is QF , g ∈ D (X ), and f ∈ C∗ (R). Then g−1 (R)
g−→ R f−→

R ∈ C∗
(
g−1 (R)

)
, so extends over X , since g−1 (R) ∈ dcozX , so is C∗-embedded

in X . �

Acknowledgements. We thank the referee for a careful reading and valuable

suggestions.
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