Neuroembryology

- Central questions
 - How do neurons segregate themselves into functionally distinct, appropriately sized, and appropriately interconnected populations?
 - What is the relationship between structure & function and how is the match between the two achieved?

Development of CNS

- What biological (intrinsic) factors contribute to the final form of the CNS?
 - Overproduction neurogenesis "extra" neurons
 - Neuron death (pruning) due to sensory input and experience in early development, neurons that are no longer needed are pruned; this may be underlying mechanism for ontogenetic adaptations
 - Trophic factors help neurons get to their destination (e.g., nerve growth factor)
 - Interactions cell-cell
 - Selective activation or suppression of different genes in each cell (all cells have a full complement of genes)
 - Plasticity

Development of CNS

- What environmental (extrinsic) factors contribute to the final form of the CNS?
 - Sensory input

Prior to Birth - Prenatal Development

- Prenatal Development Much ado about much!
- We have already seen the results from Sur's re-wiring studies of ferret brain showing that there is a great deal of plasticity in neural tissue

CNS Plasticity & Reorganization Due to Sensory Input

- Example of plasticity in somatosensory cortex after birth
 - Removal of whiskers before 7 days of life in rodents leads to elimination of barrel cells in cortex and reorganization of cortex (Woolsey et. al., 1981)
 - In adult owl monkeys, somatosensory cortex that receives projections from the hand becomes reorganized as a function of experience
 - E.g., denervation leads to invasion of cortical tissue by other parts of hand (Kaas, 1991)
 - Extra stimulation of digits leads to expansion of stimulated area on cortex (Merzenich et. al., 1984)

Newborns Exhibit Behavioral Reactions to Smells

Sweet

Sour

Facts:

- Newborns exhibit differential reactions to different smells (Steiner, 1977, 1979)
- This is probably due to prenatal experience with amniotic fluid (Marlier & Schaal, 2004)
- These reactions cannot be interpreted as reflecting "emotional" reactions because decorticate infants show similar reactions

Infant Development, Fall, 2005 (Prof. Lewkowicz)

Experimental Designs

- Longitudinal
 - Follow a single group (a cohort) of infants for some period of time
 - Study how certain behavior(s) change over that period of time
- Cross-sectional
 - Study different groups of infants at different ages
 - Study given behavior(s) to determine if they change and how they change over time
- Mixed longitudinal & cross-sectional
 - Study all available infants over time. This means that some will be tested more than once whereas others may only be tested once.

Advantages vs. Disadvantages

Longitudinal

- Advantages
 - Permits developmental inferences about continuity & stability of a particular behavior because the same infants are followed through time
- Disadvantages
 - Expensive
 - Practice effects
 - Slow data collection (months or years!)
 - Subject loss due to move, illness, scheduling problems
 - Introduces possible systematic bias because only certain types of subjects may drop out over time resulting in biased rather than representative sample

Advantages vs. Disadvantages

Cross-sectional

- Advantages
 - Data collection faster than with longitudinal method
 - No subject loss
 - No practice effects
- Disadvantages
 - Can only infer age differences, not continuity
 - Cannot say anything about individual differences
 - Age differences may be due to "cohort effects"

